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Abstract—The convenience of using private cars has an ac-
companying parking challenge which becomes a significant issue
in congested metropolitans and downtown areas. The explosive
increase in the number of vehicles has substantially raised the
issue of finding a suitable parking spot, which is both time and
resource consuming. At the same time, many private parking
spots remain idle, while their owners are not present at home.
To promote the utility of private parking spots and mitigate
parking issues, smart parking apps can be used. Unfortunately,
some of them suffer from privacy issues that affect participation
willingness, while others work in a centralized environment where
the availability of service is not guaranteed in the presence
of malicious users. In this work, we propose Blockchain-based
Smart parking with Fairness, reliability and Privacy protection,
called BSFP. Specifically, group signatures, bloom filters, and
vector-based encryption are leveraged to protect the user’s
privacy. The decentralized nature of blockchain is utilized to
achieve reliability in smart parking, and the smart contract is
used to realize fairness. Comprehensive security analysis and
experimental results based on the real-world dataset show that
BSFP achieves fairness, reliability and privacy protection with
high efficiency.

Index Terms—Vehicular Network, Blockchain, Smart Parking,
Privacy Protection, Fairness.

I. INTRODUCTION

THE advancement in the comfort level and affordability
of vehicular technology has encouraged more people to

buy vehicles for the convenience of transportation. However,
the large number of cars has led to parking issues which
have been a major problem for congested metropolitan areas.
Statistics of 2017 [1], shows that Beijing needs around 1.3
million more parking spots, and the estimated number can
reach 50 million in China. Therefore, many drivers have to
drive around while searching for a suitable parking space, and
this behavior is known as cruising. The process of cruising
for parking spots is not only time-consuming but also results
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in significant resource wastage. Another study [2] shows that
30% of traffic congestion originates from drivers searching for
parking spots, and the average search time is 8.1 min. It also
shows that such processes result in 945,000 additional extra
miles, 47,000 extra burned gasoline, and 728 tons of carbon
dioxide emissions in Los Angeles, over a year.

On the other hand, there exist numerous idle private parking
spots. Most of these parking spots are in private spaces such
as residential areas, and the utility of these is relatively low.
For instance, a parking owner working away from home for
8 hours per day, has the parking spot free for that duration
of time. Hence, if these idle parking spots can be effectively
utilized, the problem of parking issues will be significantly
reduced. At the same time, this can also result in financial
benefit for the owners to offset some of their maintenance and
paring costs.

In recent times, some smartphone apps have been providing
parking spot sharing facilities between drivers and parking
owners. Although this solution is quite simple and effective,
yet it introduces significant privacy issues. If the owner’s
parking spot information and the driver’s parking request are
uploaded to the cloud server without any privacy protection,
both the untrustworthy server and malicious adversaries can
infer sensitive information (e.g., home/work address, favorite
place to go, health condition, and real-world identity) with the
help of background knowledge. These privacy issues limit the
willingness of both parking owners and drivers to embrace the
convenience and resource-saving offered by modern technol-
ogy.

The research interest in privacy concerns (e.g., access con-
trol [3]–[5], and cloud security [6]–[9]) has garnered signif-
icant attention from the community. Hence, a diverse num-
ber of privacy-preserving mechanisms have been presented,
which cover multiple applications in vehicular networks (e.g.,
autonomous driving [10], vehicular crowdsensing [11]–[13],
access control [14], [15], vehicular cloud computing [16],
[17], and vehicular social network [18], [19]). To tackle the
privacy issues of smart parking, some privacy-preserving smart
parking schemes [20]–[23] have been proposed to hide the real
identity or exact location for both drivers and parking owners.
However, these existing schemes cannot directly used in the
smart parking scenario mentioned above. Besides, some of
them utilize a centralized cloud server to store the parking spot
information and match the parking spot for drivers or deploy
distributed RSUs (Road-Side Units) to manage and relay the
parking information. However, several challenges still need
attention in preserving the privacy of different entities in the
system.
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In a centralized server design, large bandwidth and com-
putational requirements are needed for the system to work
efficiently. If the server fails then the system availability cannot
be guaranteed. In addition, the server might return incorrect
matching results due to random failures or attacks by adver-
saries. In a distributed RSU model, individual units cannot
have large storage and computation capacities like centralized
cloud servers or nodes, hence it cannot undertake the task
of information storage and parking spot matching operation.
Besides, they require inter-communication among them to
ensure system-wide coverage however, the low bandwidth in
VANET cannot undertake high communications which may
cause network congestion. Therefore, both the centralized
server and the distribute RSU models cannot guarantee the
reliability of large-scale smart parking services.

In addition to the above limitations, most of the proposed
schemes do not consider fairness, especially when some ma-
licious users disobey the parking rules or intentionally try to
game the system. For example, a driver may refuse to pay
parking fees to the parking owner, or some parking owners
may publish fake parking spot information to generate more
revenue. In addition, when interacting with the parking service
provider, both drivers and parking owners need to pay service
charges. However, as discussed above, the reliability of service
cannot be guaranteed. In general, the users may not be able to
get the services for which they have paid the corresponding
fees, in existing smart parking schemes. Hence, fairness cannot
be guaranteed.

In light of these shortcomings of existing schemes, we pro-
pose a decentralized privacy-preserving smart parking scheme
(BSFP), that achieves both fairness and reliability. To the best
of our knowledge, this is the first decentralized and privacy-
preserving smart parking scheme that satisfies both fairness
and reliability.

Following are the major contributions of this work:

• We propose a decentralized structure for smart parking
by leveraging the blockchain, which eliminates the issues
brought from the centralized server and distributed RSUs,
and provides reliable parking services.

• We present BSFP, the blockchain-based smart park-
ing with fairness, reliability and privacy protection.
In BSFP, the BBS group signature is used to realize
anonymous authentication for both drivers and parking
owners, while providing the traceability of malicious
users. Secure pseudo-random functions and bloom filters
are used to achieve privacy-preserving location-based
range queries. Vector-based encryption is used to en-
able privacy-preserving time matching between the driver
and the parking spot. Note that the proposed privacy-
preserving location-based range query and time matching
can be used not only in our proposed scheme but also in
other relevant application scenarios.

• We design a smart contract for blockchain to achieve
fairness. The driver can obtain the correct parking match
results if they pay. The parking owner can publish their
parking spot information correctly, and receive the corre-
sponding money paid by the driver who rents the parking

spot. Also, the honest workers in the blockchain can get
rewards while the misbehaving users will be punished.

• We present a thorough security analysis and compre-
hensive experimental evaluation based on a real-world
dataset to show that BSFP achieves privacy protection,
data integrity, reliability, authentication, and traceability
with high computation & communication efficiency.

The rest of this paper is organized as follows. In Section II
we describe the related works about smart parking, blockchain
usage in the vehicular network, and financial fairness. We
make a brief introduction of the blockchain, BBS signature
and privacy-preserving range query in Section III. Section IV
presents the formal system model, threat model, and design
goals. The detailed construction of BSFP and the design of
a smart contract is introduced in Section V and Section VI,
respectively. Security analysis is given in Section VII, and
experimental results are presented in Section VIII. Finally,
Section IX concludes this paper.

II. RELATED WORKS

A. Smart Parking

The parking problem is considered an important issue as it
has attracted the attention and interest of many researchers.
Lin et al. [24] presented a survey of smart parking solutions
covering 2000-2016. The authors discussed the basic issues
in smart parking and gave valuable suggestions for research
directions and commercial products.

Although some smart parking mechanisms [25], [26] try to
improve the utility and service quality, they do not consider
the privacy issues that exist in smart parking. In recent years,
a series of privacy-preserving smart parking [20]–[23] have
been proposed to protect identity privacy and location privacy.
Lu et al. [20] proposed an intelligent, secure and privacy-
preserving parking scheme that utilizes RSUs to manage large
parking lots without sacrificing the driver’s privacy. Ni et al.
[21] presented P-SPAN, an efficient and privacy-preserving
smart parking navigation system. Compared with the existing
schemes, P-SPAN achieves efficient navigation result retrieval
with the help of Bloom Filters. Zhu et al. [22] presented ASAP,
which achieves both anonymous smart parking and anonymous
payment. In ASAP, a centralized cloud server is used to store
all locations as a hashmap, and a short randomizable signature
with E-cash is utilized to achieve anonymous parking and
payment.

Recently, Amiri et al. [23] presented a blockchain-based
privacy-preserving smart parking system that makes use of
Private Information Retrieval (PIR) and short randomizable
signature to protect the driver’s location and identity privacy.
Unfortunately, this system only considers the parking scenario
based on public parking lots instead of private parking spots.
Besides, it cannot achieve fairness and traceability as well.

Some of the proposed schemes cannot fit in our smart
parking scenario where private idle parking spots are owned by
parking owners. Some of the existing schemes discussed above
use a centralized structure that cannot counter the misbehavior
of malicious central nodes, while others use distributed RSUs
that cannot undertake high computation and communication
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overloads, thus jeopardizing their reliability. Besides, they do
not focus on the fairness of the smart parking solution.

B. Blockchain Meets Vehicular Networks

Blockchain has become popular in recent years due to the
properties of decentralization and immutability. Bitcoin [27]
first used blockchain as an underlying platform to create a
decentralized, reliable and trustless payment system. Vehicular
network, as a part of the space-air-ground integrated network
(SAGIN) [28]–[30], has also caught the attention of academic
and industry circles [31]. Now blockchain has been integrated
into various domains [32] including vehicular networks. Gao
et al. [33] proposed a blockchain-based payment mechanism
for Vehicle-to-Grid (V2G) networks. To solve the conflicts
between privacy protection and data sharing in V2G net-
works, they designed a new transaction structure with the
corresponding verification algorithm to guarantee reliability
and scalability. Sharma et al. [34] introduced B2VDM, a
decentralized architecture for vehicular data management in
a vehicular network. B2VDM makes use of blockchain to
achieve load distribution and consensus among RSUs, which
maintains the system reliability. Li et al. [35] designed a
blockchain-assisted efficient and privacy-preserving carpool-
ing scheme. They constructed a private blockchain where
RSUs are considered as decentralized blockchain nodes and
designed a transaction structure closely related to the proposed
carpooling scheme. Detailed analysis shows that it achieves
privacy protection with high efficiency.

However, to the best of our knowledge, none of the existing
schemes can be directly used to solve the issues of smart
parking. This forms the basic motivation of our work.

C. Enabling Financial Fairness

Bitcoin uses its native cryptocurrency BTC to continuously
motivate honest miners to generate the correct block in the
Bitcoin network. Hence, it can be utilized to realize fair pro-
tocols [36]–[38]. Recent work on financial fairness [39] argue
that financial fairness means that the misbehaving party will be
financially penalized while the remaining honest parties will
receive a corresponding compensation. Li et al. [40] proposed
CreditCoin, an incentive mechanism to encourage honest users
to share traffic information while tracing the malicious users to
penalize them. Hu et al. [41] presented a privacy-preserving
keyword search by leveraging smart contracts. The scheme
achieves fairness in both single-user settings and multi-user
settings. Their definition of fairness includes: 1) As long as the
data owner pays searching fees to workers (i.e., the blockchain
miners), it will receive the correct search results. 2) As long as
the miner honestly follows the protocol, they will earn money.
3) In a multi-user setting, in addition to these two properties
mentioned above, other users will receive correct search results
as long as they pay to both workers and data owners. The data
owner earns money as long as it gives the search token to users.

Inspired by the existing works that mentioned above, we
propose to achieve fairness in blockchain-enabled smart park-
ing by financially rewarding well-behaved users while misbe-
haved users will be penalized.

III. PRELIMINARIES

In this section, we present the basic information related to
blockchain and smart contracts, BBS group signature [42],
privacy-preserving range query [43], and other cryptographic
primitives used in the proposed scheme.

A. Blockchain and Smart Contracts

Blockchain technology utilizes a distributed ledger to
achieve reliable, trustless and decentralized transactions in a
multi-party system. The two major properties of the blockchain
are decentralization and immutability. Decentralization means
that there is no centralized authority (or server) to manage
the system. Moreover, blockchain cannot be controlled by a
single enterprise or government. Immutability means that once
the data is stored in the blockchain, it cannot be modified or
deleted. These two properties make blockchain an append-only
ledger with multiple replicas.

In a blockchain, all the blocks are linked in a sequence.
Each block consists of a block header that stores the block
information such as block number and previous block hash,
and a block body that contains the transactions. Each transac-
tion also has a corresponding transaction head that stores the
transaction information such as transaction hash, transaction
fee, and a body that stores the customized data or the data
used by the smart contract.

To realize flexible and Turing-complete programmability of
the blockchain, Ethereum [44] uses smart contracts. A smart
contract is a computerized transaction protocol that executes
the terms of a contract [45] automatically. In the blockchain, a
smart contract is the chain code that is triggered by the users
when they initiate a transaction.

B. BBS Group Signature

The BBS group signature [42] is based on a Strong Diffle-
Hellman (SDH) assumption, and consists of following four
algorithms which are described as follows:

• (mpk,msk, SK)← KeyGen(λ, n): A probabilistic algo-
rithm that receives a security parameter λ and the number
of group members n as input, and it outputs a public key
mpk, a master private key msk, and a set SK with n
private keys sk1, · · · , skn for n members.

• σ ← Sign(mpk, sk,m): A probabilistic algorithm that
receives a public key mpk, a member’s private key sk
and a message m as input, and it outputs a signature σ.

• {true, false} ← Verify(mpk, σ,m): A deterministic al-
gorithm that receives a public key mpk, a signature σ
and a message m as input, and it outputs true if σ is
valid, otherwise outputs false.

• Ai ← Open(mpk,msk, σi,mi): A deterministic algo-
rithm that receives a public key mpk, a master private
key msk, a signature σi and a message mi as input, and
it outputs an indicator Ai that can be used to find the
identity of the signer i.
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C. Privacy-Preserving Range Query

A privacy-preserving range query [43] consists of five
processes: Prefix Encoding, PBTree Construction, Node Ran-
domization, Trapdoor Computation, and Query, which are
described as follows:

• Prefix Encoding: Given a binary string b1b2 . . . bw, the
data owner calculates its prefix family P(b) which con-
sists of w+1 prefixes {b1b2 . . . bw, · · · , b1∗. . . ∗, ∗ . . . ∗};
given a range [a, b] represented by binary format, the user
calculates a minimum set of prefixes PM(a, b).

• PBTree Construction: Given m prefix families, the data
owner constructs a balanced binary tree PBTree pbt,
where all leaf nodes are linked as a linked list.

• Node Randomization: r keys k1, · · · , kr are shared
between the data owner and the user. For each prefix
pi in the node in pbt, the data owner calculates r double-
hashes by generating HMAC(c, HMAC(kj , pi)) for each
kj , where c is a random number, and then inputs them in
a Bloom Filter. Lastly, the data owner sends the encrypted
pbt and data to the cloud server.

• Trapdoor Computation: Given a query range [lb, rb]
with a minimal prefix set PM(lb, rb), assume
PM(lb, rb) has z prefixes. For each prefix pi, the user
calculates r hashes HMAC(k1, pi), · · · , HMAC(kr, pi).
Finally, a z × r matrix M is generated as the query
trapdoor, which will be sent to the cloud server.

• Query: Given the query trapdoor M , the cloud server
checks whether there exists a row i for every column
j in M [i], that the results of HMAC(c,M [i][j]) in the
Bloom Filter are all 1. Finally, the queried result will be
returned to the user.

D. Cryptographic Primitives

In the proposed scheme, we use several cryptographic
primitives to achieve privacy protection and data integrity. Two
secure one-way pseudo-random functions F , G and a secure
hash function H as described in Eq. 1:

F : {0, 1}λ × {0, 1}∗ → {0, 1}λ (1a)

G : {0, 1}∗ × {0, 1}∗ → {0, 1}λ (1b)

H : {0, 1}∗ → {0, 1}λ (1c)

where λ is the security parameter.
A secure pseudo-random function means that any Proba-

bilistic Polynomial Time (PPT) adversary cannot distinguish
it from the random functions. The one-way-ness of a function
f(x) means that it is easy to compute f(x) when know-
ing x, however, x cannot be recovered by f(x). A secure
hash function h achieves one-way-ness as mentioned above,
and collision-resistance which means that is impossible for
any PPT adversary to find different x1 and x2 that satisfy
h(x1) = h(x2). The formal definition of secure pseudo-
random function and secure hash function can be found in
[46], hence we omit them for simplicity.

IV. MODELS & PROBLEM STATEMENT

Here, we first present the system model followed by the
threat model and design goals of the proposed privacy-
preserving, reliable and fair smart parking scheme.

A. System Model

The proposed system comprises of five main entities as
shown in Fig. 1: Trust Authority (TA), Parking Owner, Driver,
RSU and Blockchain Network.

Communication between RSUs

Communication between two blockchain nodes, or node to RSU

Registration between TA and users

Payment through blockchain

TA’s tracing operation

Parking spot information publishing Parking request and response

RSU

RSU

TA
Blockchain

Node

Parking 
Owner

Parking 
Owner

RSU

Driver

Blockchain
Node

Parking 
Owner

Blockchain Network

Fig. 1: System model.

1) TA: In the system initialization phase, TA generates
public parameters and several keys for each registered Parking
Owner and Driver. After successful initialization, TA may
remain offline unless any dispute occurs. Under these circum-
stances, the TA can trace the problem source and find the
real-world identity of the misbehaving driver(s) or parking
owner(s). Therefore, the introduction of TA does not affect
the decentralization property.

2) Parking Owner: When the parking spot is not in use, its
owner can rent it to generate profit. Every parking owner needs
to use their real-world identity to register before forwarding
parking spot information to the system. When a driver parks
in his parking spot, he will get the parking fees paid by the
driver.

3) Driver: We assume that each driver has an Electric
Vehicle (EV) as a light-node of blockchain that can send and
receive transactions. When a driver wants to park his vehicle
somewhere, he will send a parking request to a nearby RSU.
After receiving the search result, the driver will send a parking
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request to the parking owner associated with the search result.
Finally, he drives to the parking location after contacting with
the parking owner.

4) RSU: In our system, RSU plays an important role as an
intermediary between drivers and blockchain network. When
receiving a driver’s parking request, it will authenticate the
request. If the authentication is successful, it will re-encrypt
the encrypted time vector, generate a new parking request and
forward it to the blockchain node. Besides, it will transmit the
parking spot matching results to the driver.

5) Blockchain: In the proposed system, blockchain can re-
liably store the encrypted parking requests (as transactions). In
addition, the smart contract can handle the parking request, and
it returns the parking spot matching results. The Blockchain
network also provides a platform for anonymous and fair
parking payment.

B. Threat Model

The TA is considered as trustworthy in our threat model, and
cannot be compromised. It uses secure channels to distribute
the secret keys to every driver and parking owner.

The model considers the RSUs to be honest-but-curious,
which means that they will follow our proposed protocol and
forward all the network packages. However, they may try to
infer the driver’s and parking owner’s private information by
the received packages.

Most drivers and parking owners are honest and will send
requests and responses truthfully. However, there may ex-
ist several malicious drivers and parking owners. Malicious
drivers can send a large number of fake parking requests to
sabotage the system, like a DDoS attack [47]. They can also
follow rule-breaking behaviors (e.g., the actual parking time
is different from the demanded time). For malicious parking
owners, they can publish fake parking spot information for
profits.

Blockchain network is reliable, which means that adver-
saries cannot control more than 50% network power to
compromise the integrity of consensus [48]. However, some
malicious workers (i.e., blockchain miners) try to generate fake
blocks to receive illegal profits. Also, because of the trans-
parency of blockchain, adversaries can perform an inference
attack to make statistical analysis on blockchain data to obtain
sensitive information of drivers and parking owners.

Moreover, unauthorized (unregistered) users try to imper-
sonate authorized (registered) users to publish parking spot
information or send parking requests.

Note that collusion between users and RSUs, and collusion
between users and workers are not allowed. These assumptions
are reasonable because the privacy of corrupted users will also
be revealed to others which harm their profits.

C. Design Goals

To achieve fairness, reliable and privacy-preserving smart
parking, the solution should fulfill some fundamental re-
quirements. The detailed design goals corresponding to these
requirements lists as follows:

1) Privacy Protection: The driver’s and parking owner’s
privacy should be preserved. The different types of privacy
include identity privacy (i.e., driver’s identity and parking
owner’s identity), location privacy (i.e., the queried location
for drivers and the exact parking spot location for parking
owners), time privacy (i.e., the available time for each parking
spot and the parking time for each driver), and data privacy
(i.e., sensitive information stored on blockchain). Neither the
honest-but-curious RSUs nor malicious adversaries should be
able to violate any type of privacy.

2) Integrity & Reliability: The proposed scheme should
maintain data integrity during transmission and provide re-
liable storage. The malicious data modification during data
transmission should be detected by the receiver. Besides, the
decentralized network cannot be compromised, and the stored
data cannot be tampered with by adversaries.

3) Authentication & Traceability: The drivers and parking
owners should be authenticated to prevent unauthorized user
from entering the system and impersonating legitimate users to
interact with others. When some dispute occurs, TA needs to
trace the identity of related users and realize the responsibility
confirmation.

4) Fairness: The fairness of the proposed scheme includes
two aspects: fair payment and reward & punishment. More
specifically, to achieve fairness:
• The proposed scheme should guarantee fair payment for

both drivers and parking owners. For each driver, as long
as they send parking requests and pay for it, they will
receive the correct matching results. For each parking
owner, as long as a driver occupies their parking spot,
they will gain appropriate payments by the driver as a
reward.

• The honest worker participating in the decentralized
network (i.e., the blockchain miner) should be rewarded,
while misbehaving or malicious users and workers should
be punished. The fines can be used to compensate the
drivers and parking owners who suffer the losses.

5) Efficiency: The limited bandwidth and computational
resources of VANET should be considered, and the commu-
nication and computation costs between drivers and RSUs
should be low to realize fast response time and to enable
efficient smart parking services.

V. CONSTRUCTION OF BSFP

The proposed Blockchain-based Smart and Fair Parking
(BSFP) scheme is a reliable and privacy-protecting solution. It
consists of four phases: system initialization, parking spot pub-
lishing, parking request generation, and parking spot matching.
The notations used in this work are shown in Table I. Each
phase is explained in detail below.

A. System Initialization

In this phrase, TA first generates a shared key K0 ←
{0, 1}λ, and a shared key set K = {K1, · · · ,Ko} (for each
k ∈ K, k ← {0, 1}λ), where λ is the security parameter. Next
TA generates two invertible square matrices M1,M2 of order
l.
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TABLE I: List of Notations.

Notation Description

M The number of partitioned areas in a city.
m,n The number of parking owners and drivers.
F,G Secure pseudo-random functions.
H Secure hash function.
K0 A shared key for Area No. obfuscation.
K = {K1, · · · ,Ko} o shared keys for location-based range query.
M l×l

1 ,M l×l
2 ,M l×l

3
l × l matrices for time vector encryption.

λ Security parameter.
Pi, Dj Parking owner i and driver j.
Ppk Public key for parking owners.
Pski Private key for Pi.
Dpk Public key for drivers.
Dskj Private key for Dj .
(pkR, skR) Key-pair for RSU R.
A,A′ Plain & obfuscated Area No. in the city.
(xi, yi) The exact parking spot location of Pi.
(Lix, L

i
y) Pi’s grid coordinates.

(Bix,Biy , rix, riy) Pi’s encrypted grid coordinates.
αi, α

′
i Pi’s plain & encrypted available time vector.

|| String concatenation operator.
tθ Request time threshold.
pricei Pi’s parking price per hour.
σ Digital signature.
(gxj1, gx

j
2, gy

j
1, gy

j
2) Driver j’s queried grid position range.

(T jx , T jy ) Driver j’s location-based range query token.
βj , β

′
j Dj ’s plain & encrypted parking time vector.

C The smart contract used in the proposed system.
Rj Dj ’s parking request.
Li Pi’s parking spot information.
P(b) A binary string b’s prefix family [43].
P(a, b) The minimal prefix set [43] of range [a, b].
BBS BBS group signature scheme [42].
addri Pi’s blockchain address.
addrj Dj ’s blockchain address.

For m registered parking owners, TA executes (Ppk,
Pmsk, Psk) ← BBS.KeyGen(λ,m) to generate a public
key Ppk, a master private key Pmsk, and m private keys
Psk = {Psk1, · · · , Pskm}. For n registered drivers, TA exe-
cutes (Dpk, Dmsk, Dsk)← BBS.KeyGen(λ, n) to generate
a public key Dpk, a master private key Dmsk, and n private
keys Dsk = {Dsk1, · · · , Dskn}. For RSU R (we assume that
there exists only one RSU for simplicity), TA generates a key-
pair (pkR, skR) and calculates M3 = M−11 ·M−12 . Note that
TA can use any public-key cryptosystem that supports digital
signature (e.g., RSA) to generate R’s key-pair.

Then TA sends (K0, K, M1, Ppk, Dpk, Pski) to each
parking owner i, sends (K0, K, M2, Ppk, Dpk, Dskj) to
each driver j, and sends (pkR, skR, M3) to R through secure
channels.

Note that every registered parking owner and driver needs
to submit their real-world identity to TA so that TA can trace
the misbehaving and malicious users when any dispute occurs.
We omit the detailed description of identity registration, as it
is a one-time trivial process.

B. Parking Spot Publishing

In this phase, parking owners can publish the parking spot
information to the blockchain to generate revenue from their
idle parking spots. To improve efficiency, we first partition
the whole city into M square neighborhood areas. Then, we

partition each area into a grid pattern, as illustrated in Fig. 2.
Here, the neighborhood has 12 grid coordinates, and each grid
can be represented by a horizontal coordinate and a vertical
coordinate. For instance, in Fig. 2, there exist a car and a
parking spot, and their grid coordinates are (1, 1) and (4, 3),
respectively.

For parking owner Pi, to protect the location privacy, it first
converts its exact parking spot location (xi, yi) (which can be
represented by longitude and latitude) to a grid coordinate
(Lix, L

i
y) associated with an Area No. in the city noted as Ai.

To obfuscate Ai, Pi uses K0 to compute A′i = G(K0, Ai). To
encrypt the horizontal grid coordinate Lix, Pi first computes
its binary prefix family P(Lix). Next, Pi chooses a random
number rix and an empty Bloom Filter Bix. For each prefix p ∈
P(Lix), Pi calculates o λ-length bit strings f1, · · · , fo where
fk = F (rix, G(Kk, p)), and inserts them to Bix. After inserting
all computed strings of all prefixes, Pi can obtain (Bix, rix)
as the encrypted horizontal grid coordinate. The encryption
of vertical grid coordinate Liy is similar to what Pi does in
encrypting Lix. After encryption, Pi can obtain (Biy, riy) as the
encrypted result.

To protect the time privacy, we encode the available time
of parking spot as a time vector. The time vector α =
{a1, · · · , al} consists of l dimensions and each dimension
represents 24

l hours. For example, when l = 48, a1 represents
the time interval from 00:00 to 00:30, a2 represents 00:30 -
01:00 and so on. If at > 0, it indicates that this parking spot
is unavailable at this interval, and if at = 0, the interval of
this parking spot is available. Pi uses this rule to encode the
available time and creates a time vector αi. Then Pi uses key
M1 to encrypt αi and obtains the encrypted available time
vector α′i = αi ·M1.

Moreover, to communicate with and receive payments from
drivers, the parking owner Pi needs to generate a blockchain
address addri to send and receive blockchain transaction. Note
that addri can be generated by Pi himself, and the generation
does not use any real identity of Pi, which achieves account
anonymity.

Finally, Pi uses addri to publish the encrypted parking spot
information Li = (A′i,Bix,Biy, rix, riy, α′i, addri, pricei, ti, σi)
to the blockchain by invoking the smart contract, where
ti represents the current timestamp that will be used for
time verification, and σi = BBS.Sign(Ppk, Pski, H(tmp))
is the BBS group signature signed by Pi, where tmp =
A′i||Bix||Biy||rix||riy||α′i||addri||pricei||ti.

When receiving Li, the smart contract C first makes a
time verification by comparing t − ti and tθ, where t
stands for the current timestamp, ti stands for Pi’s pub-
lishing time in Li, and tθ represents the time threshold. If
t − ti > tθ, Li will be dropped as obsolete information. If
the verification is successful, C verifies the BBS signature
by executing BBS.Verify(Ppk, σi, H(tmp)), where tmp =
A′i||Bix||Biy||rix||riy||α′i||addri||pricei||ti. If the verification re-
turns true, C will add (or update the historical) Li to the
blockchain, otherwise Li will be rejected.
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Fig. 2: An example of grid coordinates.

C. Parking Request Generation

When the driver Dj intends to park their car, they send an
encrypted parking request to the blockchain through RSU. To
generate parking request, Dj first designates a location range
represented by (gxj1, gx

j
2, gy

j
1, gy

j
2), where the horizontal grid

coordinate ranges from [gxj1, gx
j
2] and the vertical grid coor-

dinate ranges from [gyj1, gy
j
2].

Dj first obfuscates the located Area No. Aj similar to what
the parking owner Pi does, as A′j = G(K0, Aj). To generate
the horizontal grid range query token, Dj first computes the
minimum prefix set P(gxj1, gx

j
2). Assume that P(gxj1, gx

j
2)

has z elements p1, · · · , pz , Dj obtains the token by computing
T jx =

⋃z
i′=1{

⋃o
k=1G(Kk, pi′)}. The generation of vertical

grid range query token is similar to what Dj does in generating
T jx . After generation, Dj obtains T jy as the vertical grid range
search token.

Next, Dj encodes the parking time using a similar process
as that of parking owner. The only difference is: at > 0 (or
at = 0) indicates that Dj will (or will not) park at this time
interval. The encoded time vector is noted as βj . Then Dj uses
the key M2 to encrypt βj and obtains the encrypted parking
time vector β′j =M2 · βTj .

Finally, similar to the parking owners, the driver Di uses
his blockchain address addrj to invoke the smart contract
and send the parking request Rj = (A′j , T jx , T jy , β′j , tj , σj) to
the blockchain through the RSU nearby, where tj represents
the current timestamp that will be used for time verification,
and σj = BBS.Sign(Dpk,Dskj , H(tmp)) is the BBS group
signature signed by Dj , where tmp = A′j ||T jx ||T jy ||β′j ||tj .

When receiving Rj , RSU first makes a time verification. If
t− tj > tθ, Rj will be dropped as an obsolete request. If the
verification is successful, RSU then verifies the BBS signature
by executing BBS.Verify(Dpk, σj , H(tmp)), where tmp =
A′j ||T jx ||T jy ||β′j ||tj . If the verification returns true, RSU will
calculate β′′j =M3 · β′j =M−11 ·M−12 ·M2 · βTj =M−11 · βTj ,
and use the private key skR to generate a signature σR of
H(A′j ||T jx ||T jy ||β′j ||tj ||σj ||β′′j ). Then R generates a modified
request R′j = (A′j , T jx , T jy , β′j , tj , σj , β′′j , σR) and sends it to
blockchain. If the verification is failed, Rj will be rejected.

D. Parking Spot Matching

When receiving Dj’s parking request R′j generated by RSU
R, the peer of the blockchain network first uses R’s public
key pkR to verify the signature σR. If the verification is
successful, it will invoke the associated smart contract. The
smart contract C makes a parking spot matching that depends
on the partitioned area, the encrypted grid location range
and encrypted parking time. This phase includes two steps:
location-based matching and time-based matching.

1) Location-based Matching: The smart contract C first
parses the grid range search token (T jx , T jy ). Then for each
published parking spot information Li that satisfies A′i == A′j
(which means that the driver associated with Area No. A′i and
the parking spots associated with A′j belong to the same area),
it checks whether Li’s grid coordinate is in the queried grid
range. To check the horizontal grid coordinate, C first gets
the Bloom Filter Bix and random number rix from Li, and
parses the token T jx into z groups T1, · · · , Tz , where each
Ti′ consists of o λ-length strings g1, · · · , go. For each Ti′ , C
calculates T ′i′ =

⋃o
k=1 F (r

x
i , gk) and queries each f ∈ T ′i′

into Bix. If there exists a T ′i′ that for all f ∈ T ′i′ , the query
returns true, and C will then check the vertical grid coordinate.
Otherwise, it means Li is not in the queried location range, and
C will check the next parking spot information that is stored
on blockchain. The vertical grid coordinate checking is similar
to what C does in checking the horizontal grid coordinate. If
the checking is successful, Li will be added to a candidate set
S. Finally, C outputs S as the grid range query result, which
will be used next.

2) Time-based matching: After the location-based match-
ing, C will perform the time-based matching using the fol-
lowing steps: For each Li ∈ S, C executes α′i · β′j =

(αi ·M1) · (M−11 · βTj ) = αi · βTj , where α′i and β′j represent
Li’s encrypted available time vector and Dj’s parking time
vector, respectively. If α′i · β′j 6= 0, Li will be filtered because
the time is not matched. Otherwise, Li’s blockchain address
and price (addri, pricei) associated with the parking owner
Pi will be added to a new candidate set RS.

Finally, C sends a blockchain transaction that contains the
parking spot matching result res to Dj with the output address
addrj, where res ∈ RS is the matched result with the
lowest price. The driver Dj can contact to the parking owner
associated with the address addri, pay parking fees, and finally
finish parking.

VI. ACHIEVING FAIRNESS

It is extremely important that the proposed system is not
only privacy-preserving but also fair. In this regard, we present
a complete analysis to prove that BSFP achieves fairness. In
the following sub-sections, we focus on the design of the smart
contract C, the reward for honest workers, and the punishment
of malicious workers and users.

A. Notations for Fairness Realization

Table II lists the notations used in the process of achieving
fairness in BSFP.
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TABLE II: List of Notations for Fairness Realization.

Notation Description

addri Parking owner Pi’s blockchain address.
addrj Driver Dj ’s blockchain address.
deposit Initial deposited digital currency.
balancePi, balanceDj Pi and Dj ’s account balance.
costmax Cost limit of invoking C.
costI Contract fee of calling SpotPub() function.
costM Contract fee of calling Match() function.
costP Contract fee of calling Payment() function.
paymentji Advanced payment by Dj to Pi.

Note that the costmax is considered as a fixed cost limit. For
any contract function F(), if the execution cost exceeds this
limit, the execution of F() will be terminated, and the cost
will not be returned to the caller. The costI, costM and costP
represent the contract fee of calling SpotPub(), Match() and
Payment(), respectively. The functional cost can be set as a
fixed value or be related to the computation complexity of the
function. In addition, the transaction fee is also considered,
which is related to the data size stored on the transaction.

For example, the functional cost (i.e., contract fee) and the
transaction fee can be quantified as cF · feecomp and lenT

· feedata, respectively. More specifically, cF represents the
computational cost of function F, feecomp represents the fee of
each consumed computational resource unit, lenT represents
the byte length of transaction T, and feedata represents the
fee of each stored byte. The set of cost is similar to the
gas mechanism of Ethereum that uses Gas associated to its
naive currency ETH to quantify the functional cost, and uses
gasLimit to set the cost limit of a given smart contract.

B. Design of the Smart Contract

The smart contract C in the proposed scheme plays an
integral part in achieving fairness and comprises four main
functions as shown in Fig. 3. Each of these is discussed in
detail below.

1) Contract Initialization: The function Init() is used to ini-
tialize the smart contract. First TA deploys C to the blockchain,
and all the registered parking owners & drivers need to put
deposit amounts of blockchain-based digital currency (e.g.,
ETH in Ethereum) to their blockchain address.

2) Parking Spot Publishing: The function SpotPub() is
called by Pi to publish the parking spot information Li.
First, the function checks whether Pi can afford the contract
fees (that will be given to blockchain miners) by comparing
balancePi and costmax. If sufficient balance is available to pay
the fees, it will perform time verification and authentication
as shown in Fig. 3. If the verification and authentication
are successful, it will store Li to blockchain and deduct the
contract fee costI from the balance of Pi’s address addri.

3) Parking spot Matching: The function Match() is called
by Dj to find the parking spot that satisfies both location and
time requirements. First the function checks Dj’s balance that
is similar to what SpotPub() does. If the checking is passed,
it will perform parking spot matching as is given above.
Because RSU undertakes the task of driver’s authentication
and verification, this function does not need to perform these

Smart contract C

1. Contract Initialization: Init()
1). TA deploys C to the blockchain.
2). Each parking owner Pi puts deposit to addri.
3). Each driver Dj puts deposit to addrj.

2. Parking Spot Publishing: SpotPub(Li)
1). Check balancePi > costmax.
2). Perform Time Verification.
3). Perform Parking Owner Authentication.
4). Store Li to blockchain.
5). Set balancePi = balancePi − costI.

3. Parking Spot Matching: Match(Rj)
1). Check balanceDj > costmax.
2). Perform Parking Spot Matching.
3). Set balanceDj = balanceDj − costM.
4). Return matching result res to Dj by transaction.

4. Payment: Payment(addri, paymentji)
1). Check balanceDj > costmax + paymentji.
2). Update Li’s available time vector.
3). Set balanceDj = balanceDj − costP − paymentji.
4). Set balancePi = balancePi + paymentji.

Fig. 3: Design of smart contract C for fairness.

redundant procedures. After matching, it deducts the contract
fee costM from the balance of Dj’s address addrj.

4) Payment: The function Payment() is called by Dj to
make an advance payment to the parking owner Pi. First the
function checks whether Dj can afford both the contract fee
and the payment by comparing balanceDj and costmax +
paymentji. If the checking is successful, it will update Li’s
available time vector. Then, it deducts the contract fee costP
and pays paymentji to Pi from addrj’s balance.

C. How to Achieve Fairness

The proposed BSFP achieves fairness on all the entities (i.e.,
drivers, parking owners, and workers) who participated in the
system.

1) Fair Payment: A major aspect of fairness is that both
the driver and the parking owner legally receive what they
are paying for. For a driver Dj , if he pays the fee, he will
get the correct parking spot matching result. For a parking
owner Pi, if he pays the fee, his parking spot information will
be published. Moreover, if a driver rents a parking spot, the
corresponding parking owner will get the payment sent by the
driver. This kind of fairness can be practically guaranteed by
the smart contract C designed in our proposal.

2) Rewards & Punishment: The second aspect of fairness
is shown through the reward to an honest worker (i.e., the
blockchain miner), while the misbehaving or malicious users
are punished. This kind of fairness can be guaranteed by
the blockchain network and TA’s accountability. For honest
workers, they will receive the mining rewards which consist
of transaction fees and contract fees. For malicious users, all
their interactions will be stored on the blockchain publicly and
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permanently. In case of any dispute, TA can trace the malicious
users by checking its BBS signature in their parking spot
information or parking requirements stored on the blockchain.
Once the real identity of the malicious user is traced, TA will
punish them in both economic and administrative terms.

D. Summary

In traditional smart parking, the centralized cloud server
performs parking spot publishing for parking owners and
performs parking spot matching for drivers. Unfortunately, a
compromised cloud may drop the valid request for both drivers
and parking owners, or return an inaccurate query result to
drivers.

The decentralized structure of BSFP eliminates the mali-
cious central node, realizes reliable parking spot publishing &
matching, and also enhances the fairness of BSFP. Besides,
the specialized design of the smart contract C solves the
financial issues of smart parking in trustless circumstances.
In general, BSFP achieves fairness for both parking owners
and drivers. Meanwhile, since miner nodes’ real identities can
be traced, the honest miner nodes will be rewarded, while the
misbehaving users will be punished.

VII. SECURITY ANALYSIS

In this section, we present a thorough security analysis
to prove that BSFP achieves privacy protection, integrity,
reliability, authentication, and traceability.

A. Identity Privacy Protection

We utilize the BBS group signature [42] to protect identity
privacy. In BSFP, all the drivers belong to the same group
and all the parking owners belong to another group. When
the smart contract verifies the BBS signature σ, the only
information that can be inferred is that the requester is a driver
or a parking owner. In addition, adversaries cannot infer which
driver or parking owner signs σ because the BBS signature
achieves full-anonymity which ensures that σ cannot reveal
the signer’s identity.

Moreover, both drivers and parking owners use their
blockchain address addr to invoke the smart contract or to
communicate with others. Blockchain address can be seen as
a pseudonym generated by themselves, and the generation of
blockchain address is irrelevant to the owner’s real identity.
Hence, the identity privacy for both drivers and parking owners
can be protected by the unlinkability of the BBS group
signature and blockchain address.

B. Location Privacy Protection

When a parking owner Pi wants to publish their parking
spot information, he converts the exact location to grid coor-
dinates and obfuscates it by using pseudo-random functions
F , G and Bloom Filters (BFs). The security of location
encryption for location-based range query equals to proving
that 1) the original data obfuscated and stored in the BF cannot
be revealed, and 2) any two BFs are indistinguishable to any

PPT adversaries. These two requirements can be guaranteed
if the one-way pseudo-random functions F and G are secure.

When a driver Dj needs to find a parking spot, first he
generates a query token of the queried grid range. The security
of token generation for location-based range query equals to
proving that the queried range cannot be revealed by query
token. This requirement can be guaranteed if G is secure.

Hence, both driver’s queried location privacy and parking
owner’s parking location privacy are protected by the crypto-
graphic primitives mentioned above.

C. Time Privacy Protection

For a parking owner Pi, the available time vector αi will
be encrypted by α′i = αi · M1 in parking spot publishing
phase. For a driver Dj , the parking time vector βj will be
encrypted by β′j = M2 · βTj in request generation phases.
Without knowing M1 and M2, αi and βj cannot be recovered
from α′i and β′j , respectively. Besides, without the RSU R

that holds the key M−11 · M−12 , all the encrypted available
time vector stored on the blockchain cannot be recovered by
malicious driver that holds M1. Hence the privacy of parking
owner’s available time and driver’s parking time is protected.

D. Data Privacy Protection

The data stored on the blockchain mainly includes three
pieces of information: parking spot information, parking re-
quests, and the intermediate data of parking spot matching.
Based on the above analysis, all the data stored on the
blockchain is encrypted or obfuscated. Moreover, all the
parking spot matching processes are based on ciphertexts
which means that the blockchain does not need to decrypt
them during the parking spot matching process. Hence, if all
the cryptographic primitives that we use in BSFP are secure,
the data privacy will be well protected.

E. Integrity & Reliability

We utilize hash function and digital signatures to realize
the integrity during data transmission. In BSFP, each parking
spot information and each parking request contains a BBS
signature of the hashed data. Hence, if the BBS signature
is secure, and the hash function H is collision-resistant, the
data modification by malicious adversaries will be detected
by the smart contract C or RSU when verifying the BBS
signature. The blockchain transaction also uses the secure
digital signature (e.g., ECDSA in Bitcoin and Ethereum),
hence, the integrity during transaction transmission can also
be guaranteed.

Blockchain is a reliable and decentralized network with
immutability, hence the data stored on the blockchain cannot
be tampered with by malicious adversaries. Moreover, the
flooding of fake parking requests to congest the system cannot
be realized because each parking request invokes the smart
contract C which will cost at most costmax in contract fees.
To send numerous parking requests, adversaries will have to
spend a lot of money which will be unacceptable for them.
Hence, reliable data storage can also be guaranteed.
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F. Authentication & Traceability

Both the smart contract C and RSUs have to conduct time
verification and authentication before handling the requests of
parking owners and drivers. The time verification is used to
resist replay attacks during authentication, and the BBS group
signature is used for anonymous authentication. For registered
users, they can use their private key provided by TA to generate
a BBS signature for authentication. For unauthorized users, the
BBS signature cannot be generated without having a private
key. Hence, unauthorized users cannot impersonate authorized
users to attack the whole system.

Although both drivers and parking owners use group sig-
natures to achieve anonymous authentication, the identity
of misbehaving users can be traced by TA. For instance,
assume a parking owner Pi publishes a fake parking spot
information Li = (A′i,Bix,Biy, rix, riy, α′i, addri, ti, σi), then
the TA can use the BBS signature σi to trace Pi’s real-world
identity by executing BBS.Open(Ppk, Pmsk,H(tmp), σi),
where tmp = A′i||Bix||Biy||rix||riy||α′i||addri||ti. Similarly, for
misbehaved driver Dj , his real-world identity can also be
traced when TA checks the BBS signature σj . Hence, trace-
ability is also guaranteed.

VIII. EXPERIMENTAL EVALUATION

To evaluate the quantitative metrics of the proposed BSFP
scheme, we use the real-world datasets for extensive experi-
mentation. Experimental results show that BSFP has high ef-
ficiency, which indicates that the proposed scheme is practical
in real-world smart parking scenarios.

A. Experimental Setup

We implement the proposed BSFP scheme and deploy it
in Hyperledger Fabric1 blockchain platform, as it has flexible
programmability and relatively high efficiency compared to
other existing blockchain platforms. For the implementation of
the anonymous group signature, we utilize the PBC Library2,3.
All programs are written in Golang and compiled on Go 1.13.6
x64 environment.

We have used the T-Drive trajectory data sample4 which
includes the real-world trajectory data generated by 30,000
taxis in Beijing as a reference for real-world parking process.
We also use the map of Downtown Beijing5 to locate both the
position (i.e., the latitude and longitude coordinates) of drivers
and parking spots. These real-world datasets are preprocessed
using the following steps: 1) We have selected the location data
with latitude ranging from 39.8◦N to 40.0◦N and longitude
ranging from 116.2◦E to 116.4◦E. 2) We then partition the
selected region into 25 areas. Each area consists of 4×4 = 16
grids with the corresponding coordinates range from (0, 0) to
(3, 3). 3) We randomly select 5000 locations for drivers and
2500 locations for parking owners. 4) For each driver, we

1https://www.hyperledger.org/projects/fabric
2https://crypto.stanford.edu/pbc/
3https://github.com/Nik-U/pbc
4https://www.microsoft.com/en-us/research/publication/t-drive-trajectory-

data-sample/
5http://www.chinatouristmaps.com/travel/beijing/street-map.html

calculate the current Area No. and randomly create the queried
range based on their exact locations. The request time vector
is randomly generated and follows a uniform distribution.
5) For each parking owner, we convert the exact location
of the parking spot to Area No. and grid coordinates. The
available time vector is randomly generated and follows a
uniform distribution.

We set the security parameter λ = 256, the number
of shared keys for location-based range query o = 5, the
dimension of time vector and matrix l = 12, and the request
time threshold tθ = 120s. The price for each parking spot is
randomly generated which follows a uniform distribution rang-
ing from 1 to 10. We use SHA256 and HMAC to instantiate
the hash function H and the pseudo-random function F,G,
respectively. We use the RSA cryptosystem with 2048bit key
length to realize the signature generation & verification for R
and C, respectively.

In order to execute the smart contract in BSFP, we deploy a
test blockchain network consisting of four peer nodes running
Hyperledger Fabric 1.3. Each blockchain node is running on a
server with an Intel i7-9700K processor with 16G RAM and
64-bit Ubuntu 16.04 operating system. The clients (for RSU,
driver, and parking owner) of BSFP are running on a system
with an Intel i5-7300U processor with 8GB RAM and 64-bit
Ubuntu 16.04 operating system.

TABLE III: Experimental Scenarios.

Scenario Number of
Drivers

Number of Parking
Spot Owners

1 500 250
2 1000 500
3 1500 750
4 2000 1000
5 2500 1250
6 3000 1500
7 3500 1750
8 4000 2000
9 4500 2250

10 5000 2500

We simulate 10 different scenarios to analyze the influence
of the varying number of drivers and available parking spots.
As is shown in Table III, Scenario 1 and Scenario 10 have the
minimum and the maximum number of drivers and parking
spot owners, respectively. In our experimental scenario, each
parking owner publishes one parking spot to the blockchain,
and each driver sends one parking request to the blockchain.
We run the simulation for each scenario 5 times and compute
the average execution time to reduce errors.

B. Time Complexity
We present a detailed time complexity analysis of the whole

smart parking process to prove that the proposed BSFP scheme
has high computation efficiency.

To analyze the time costs quantitatively, we use several nota-
tions that represent the number of entities and the time costs of
some basic operations. The list of notations is shown in Table
IV. Note that the execution time of some operations (e.g.,
integer comparison in time verification process) is negligible,
hence we neglect the time cost of these operations.
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Fig. 4: Time Performance of BSFP.

TABLE IV: Notations for Time Complexity Analysis.

Notation Description

m The number of parking owners.
n The number of drivers.
treg Time for entity registration.
tsig Time for BBS signature generation.
tver Time for BBS signature verification.
tmul Time for matrix multiplication.
tlenc Time for encrypting parking owner’s exact location.
ttoken Time for generating location-based range search token.
tquery Time for executing location-based querying.
trsig Time for RSA signature generation.
trver Time for RSA signature verification.
tcomm Communication delay for one side.

1) System Initialization: In the initialization process, TA
will generate and distribute the shared keys, the shared ma-
trices, and the BBS group private key as the registration
information for each entity. Hence, the execution time of
system initialization is approximately (m+ n) · treg, and the
corresponding time complexity is O(m+ n).

It can be observed from Fig. 4(a) that as the total number of
entities (i.e., m+n for each scenario) increases, the execution
time also increases, which is quite intuitive. On average, each
registration process only costs about 1.93ms. Consequently,
the time cost of system initialization is dependent on the
number of registered entities, and it is negligible in practical
scenarios.

2) Parking Spot Publishing: After initialization, the parking
owner will generate parking spot information which consists of
an obfuscated location, an encrypted time vector, an address,
and a BBS signature. Then it invokes the smart contract C to
publish the parking spot information to the blockchain. Hence,
for each parking owner, the execution time of parking spot
information encryption is approximately tlenc + tmul + tsig .
For C, the execution time of verification is about tver. There-
fore, the execution time of parking spot publishing is about
tlenc + tmul + tsig + tver + tcomm, and the corresponding
time complexity is O(1). Note that the communication de-
lay tcomm is highly dependent on the network topological
structure, interface & link bandwidth, and the Fabric itself.
Hence, we omit the analysis of communication delay because
its optimization is beyond the scope of this work. In the
proposed scheme’s implementation, tcomm was observed to
be approximately 40ms, which is acceptable.

Fig. 4(b) shows the average execution time cost for en-

cryption for each driver and verification & publishing for
the smart contract (chaincode). It can also be observed in
Fig. 4(b) that the time cost for encryption, validation, and
publishing are not dependent on the number of parking owners.
More specifically, it costs approximately 10.59ms for a parking
owner to encrypt the parking spot information, while the
verification & publishing time is about 10.52ms. Hence, it can
be concluded that the proposed scheme is efficient and highly
scalable.

3) Parking Request Generation: When a driver wants to
find a suitable parking spot, it first generates a parking
request that consists of an obfuscated location search token,
an encrypted time vector, and a BBS signature, and sends it to
the nearby RSU. Hence, for each parking owner, the execution
time of request generation is computed as ttoken+ tmul+ tsig .
Then the RSU verifies the request that includes time verifi-
cation (of which the time cost is negligible), BBS signature
verification. If the verification is successful, it re-encrypts the
request time vector, generates an RSA signature, and forwards
the modified request to the blockchain. Hence, for RSU,
the execution time of request verification and new request
generation is tver+tmul+trsig. Therefore, the execution time
of request sending is ttoken+2tmul+tsig+tver+trsig+tcomm,
and the time complexity of request sending is O(1).

It can be observed in Fig. 4(c) that these two steps are
efficient and independent of the number of drivers in the
system. More specifically, the average execution times for
request generation and verification are only 10.25ms and
10.46ms, respectively.

4) Parking Spot Matching: During the parking spot match-
ing process, C first verifies RSU’s signature, then all the
parking spots in the driver’s area will be matched to get the
candidate matching results by executing at most m querying
(for location-based matching) operations and m matrix mul-
tiplication (for time-based matching) operations. Hence, the
execution time of request matching is trver+m·(tquery+tmul),
and the corresponding time complexity is O(m).

Fig. 4(d) shows that when the number of the parking owners
increases, the average execution time also increases. As there
are more parking spots available, the time required to match
and find suitable ones also increases proportionally.
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TABLE V: Communication Costs of BSFP.

Process Communication Costs

Parking Spot Publishing 8.47KB
Parking Request Generation 2.40KB
Parking Spot Matching 0.11KB

C. Communication Complexity

In this set of experiments, we analyze the communication
complexity of BSFP, which represents the number of bits
exchanged between those entities, to prove that BSFP has high
communication efficiency.

In the Parking Spot Publishing process, the encrypted
parking spot information will be sent and published on the
blockchain. Therefore, the communication complexity equals
to the size of the blockchain transaction that stores the parking
owner Pi’s encrypted parking spot Li. As is mentioned in Sec-
tion III, each blockchain transaction consists of a transaction
head and a transaction body. The size of a transaction head is
determined by the blockchain itself, we use size(head) as the
size of a transaction head for simplicity, where the function
of size(a) represents the bit length of a. For the transaction
body, it contains the stored parking spot information L and
several contract parameters for invoking the smart contract C.
The bit length of these contract parameters is far less than that
of Li, hence the size of a transaction approximately equals
size(head) + size(Li). Consequently, the communication
complexity between the parking owner and the blockchain in
this process achieves O(1).

In the Parking Request Sending process, the driver Dj

sends the parking request Rj to a nearby RSU, follow-
ing which the RSU verifies the request and forwards it to
the blockchain. The communication cost of this process is
size(head) + size(Rj). The corresponding communication
complexity between the user and the RSU and that between
the RSU and the blockchain are both O(1).

In the Parking Spot Matching process, after matching the
result res will be sent to the driver through RSUs. The
communication cost of this process is size(head)+size(res).
The corresponding communication complexity between the
blockchain and the RSU and that between the RSU and the
blockchain are both O(1).

Table V illustrates the overall communication costs of BSFP.
The cost of parking spot matching is the highest. However, it
only takes less than 8.5KB to store information about a parking
spot. Moreover, in a real-world scenario, once a parking owner
publishes their parking spots, only the available time will be
changed, which only costs 0.19KB in our experiment. Hence
the execution of parking spot publishing is not communication
intensive. It should be noted that the communication cost of
other processes is less than 2.5KB each, which makes the
entire scheme significantly efficient and scalable.

D. Summary

In Table VI we summarize both the time and communication
complexity of BSFP. It can be observed that BSFP achieves
O(1) time complexity in most processes and achieves O(1)

communication complexity in all processes. Experimental re-
sults based on real-world datasets show that it only costs
several hundred milliseconds and less than 10KB for each
driver and parking owners to complete the whole process
of smart parking. Even in scenario 10 where 7500 entities
participate in the system, the execution time is still efficient. In
conclusion, BSFP achieves both computation and communica-
tion efficiency, and it can be used in real-world smart parking
scenarios.

IX. CONCLUSION AND FUTURE WORK

This work presents a novel system model for decentralized
and reliable smart parking, where the blockchain is leveraged
to guarantee data reliability. The proposed BSFP, a blockchain-
based smart parking scheme with fairness, reliability and
privacy protection, utilizes the BBS group signature, secure
pseudo-random function, bloom filter, and vector-based en-
cryption to protect the privacy for both drivers and parking
owners while enabling the traceability of TA to find the
misbehaving users. To achieve fairness, we design a smart
contract that can guarantee that every honest user and worker
in the system can get the correct results and the corresponding
rewards, while the misbehaving or malicious users and workers
are punished. A thorough security analysis proves that the pro-
posed BSFP scheme protects identity privacy, location privacy,
time privacy, and data privacy. It also proves that BSFP realizes
integrity, reliability, authentication, and traceability. Compre-
hensive experiments based on real-world dataset shows that
BSFP achieves computation and communication efficiency.

In the future, we intend to consider a more flexible matching
strategy. Currently, BSFP considers location, time, and parking
price as the main factors for parking spot matching. Moreover,
the reputation score can also be used to evaluate the behav-
ior of both drivers and parking owners. Achieving privacy-
preserving reputation calculation, matching, and updates will
be a challenging task in this regard. Another extension can
focus on the use of fog nodes, which can further reduce
both the computation and communication costs of the entire
system. However, reliability and privacy issues for fog nodes,
in addition to their integration with blockchain is also a
challenge issue.

REFERENCES

[1] (2017) Smart apps are solving china’s parking problems. [On-
line]. Available: http://english.gov.cn/news/video/2017/09/25/content
281475882375396.htm

[2] D. C. Shoup, “Cruising for parking,” Transport Policy, vol. 13, no. 6,
pp. 479 – 486, 2006, parking.

[3] Y. Xue, K. Xue, N. Gai, J. Hong, D. S. L. Wei, and P. Hong, “An
attribute-based controlled collaborative access control scheme for public
cloud storage,” IEEE Trans. Information Forensics and Security, vol. 14,
no. 11, pp. 2927–2942, 2019.

[4] S. Xu, G. Yang, Y. Mu, and R. H. Deng, “Secure fine-grained access
control and data sharing for dynamic groups in the cloud,” IEEE Trans.
Information Forensics and Security, vol. 13, no. 8, pp. 2101–2113, 2018.

[5] S. Xu, Y. Li, R. H. Deng, Y. Zhang, X. Luo, and X. Liu, “Lightweight
and expressive fine-grained access control for healthcare internet-of-
things,” IEEE Transactions on Cloud Computing, 2019.

[6] C. Zhang, L. Zhu, C. Xu, K. Sharif, C. Zhang, and X. Liu, “PGAS:
privacy-preserving graph encryption for accurate constrained shortest
distance queries,” Inf. Sci., vol. 506, pp. 325–345, 2020.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 26,2020 at 04:15:24 UTC from IEEE Xplore.  Restrictions apply. 

http://english.gov.cn/news/video/2017/09/25/content_281475882375396.htm
http://english.gov.cn/news/video/2017/09/25/content_281475882375396.htm


0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2020.2984621, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 13

TABLE VI: Time and Communication Complexity of BSFP.

Process Time Complexity Communication Complexity
for Driver

Communication Complexity
for Parking Owner

System Initialization O(m+ n) - -
Parking Spot Publishing O(1) - O(1)
Parking Request Generation O(1) O(1) -
Parking Spot Matching O(m) O(1) -

[7] S. Xu, G. Yang, and Y. Mu, “Revocable attribute-based encryption with
decryption key exposure resistance and ciphertext delegation,” Inf. Sci.,
vol. 479, pp. 116–134, 2019.

[8] X. Yang, R. Lu, J. Shao, X. Tang, and H. Yang, “An efficient and
privacy-preserving disease risk prediction scheme for e-healthcare,”
IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3284–3297, 2019.

[9] K. Xue, S. Li, J. Hong, Y. Xue, N. Yu, and P. Hong, “Two-cloud
secure database for numeric-related SQL range queries with privacy
preserving,” IEEE Trans. Information Forensics and Security, vol. 12,
no. 7, pp. 1596–1608, 2017.

[10] J. Wang, J. Liu, and N. Kato, “Networking and communications in
autonomous driving: A survey,” IEEE Communications Surveys and
Tutorials, vol. 21, no. 2, pp. 1243–1274, 2019.

[11] C. Zhang, L. Zhu, C. Xu, K. Sharif, and X. Liu, “PPTDS: A privacy-
preserving truth discovery scheme in crowd sensing systems,” Inf. Sci.,
vol. 484, pp. 183–196, 2019.

[12] L. Zhu, C. Zhang, C. Xu, and K. Sharif, “Rtsense: Providing reliable
trust-based crowdsensing services in CVCC,” IEEE Network, vol. 32,
no. 3, pp. 20–26, 2018.

[13] Q. Yuan, H. Zhou, Z. Liu, J. Li, F. Yang, and X. Shen, “Cesense: Cost-
effective urban environment sensing in vehicular sensor networks,” IEEE
Trans. Intelligent Transportation Systems, vol. 20, no. 9, pp. 3235–3246,
2019.

[14] F. Lyu, H. Zhu, H. Zhou, W. Xu, N. Zhang, M. Li, and X. Shen, “SS-
MAC: A novel time slot-sharing MAC for safety messages broadcasting
in vanets,” IEEE Trans. Vehicular Technology, vol. 67, no. 4, pp. 3586–
3597, 2018.

[15] F. Lyu, H. Zhu, H. Zhou, L. P. Qian, W. Xu, M. Li, and X. Shen,
“Momac: Mobility-aware and collision-avoidance MAC for safety ap-
plications in vanets,” IEEE Trans. Vehicular Technology, vol. 67, no. 11,
pp. 10 590–10 602, 2018.

[16] K. Xue, J. Hong, Y. Ma, D. S. L. Wei, P. Hong, and N. Yu, “Fog-aided
verifiable privacy preserving access control for latency-sensitive data
sharing in vehicular cloud computing,” IEEE Network, vol. 32, no. 3,
pp. 7–13, 2018.

[17] J. Shao and G. Wei, “Secure outsourced computation in connected
vehicular cloud computing,” IEEE Network, vol. 32, no. 3, pp. 36–41,
2018.

[18] L. Zhu, C. Zhang, C. Xu, X. Du, R. Xu, K. Sharif, and M. Guizani,
“PRIF: A privacy-preserving interest-based forwarding scheme for social
internet of vehicles,” CoRR, vol. abs/1804.02440, 2018.

[19] Y. Li, Q. Luo, J. Liu, H. Guo, and N. Kato, “TSP security in intelli-
gent and connected vehicles: Challenges and solutions,” IEEE Wireless
Commun., vol. 26, no. 3, pp. 125–131, 2019.

[20] R. Lu, X. Lin, H. Zhu, and X. Shen, “An intelligent secure and privacy-
preserving parking scheme through vehicular communications,” IEEE
Trans. Vehicular Technology, vol. 59, no. 6, pp. 2772–2785, 2010.

[21] J. Ni, K. Zhang, Y. Yu, X. Lin, and X. Shen, “Privacy-preserving smart
parking navigation supporting efficient driving guidance retrieval,” IEEE
Trans. Vehicular Technology, vol. 67, no. 7, pp. 6504–6517, 2018.

[22] L. Zhu, M. Li, Z. Zhang, and Z. Qin, “Asap: An anonymous smart-
parking and payment scheme in vehicular networks,” IEEE Transactions
on Dependable and Secure Computing, pp. 1–1, 2018.

[23] W. A. Amiri, M. Baza, K. Banawan, M. M. E. A. Mahmoud,
W. Alasmary, and K. Akkaya, “Privacy-preserving smart parking sys-
tem using blockchain and private information retrieval,” CoRR, vol.
abs/1904.09703, 2019.

[24] T. Lin, H. Rivano, and F. L. Mouel, “A survey of smart parking
solutions,” IEEE Trans. Intelligent Transportation Systems, vol. 18,
no. 12, pp. 3229–3253, 2017.

[25] J. Lin, S. Chen, C. Chang, and G. Chen, “SPA: smart parking algorithm
based on driver behavior and parking traffic predictions,” IEEE Access,
vol. 7, pp. 34 275–34 288, 2019.

[26] S. R. Rizvi, S. Zehra, and S. Olariu, “ASPIRE: an agent-oriented
smart parking recommendation system for smart cities,” IEEE Intell.
Transport. Syst. Mag., vol. 11, no. 4, pp. 48–61, 2019.

[27] S. Nakamoto. (2008) Bitcoin: A peer-to-peer electronic cash system.
[Online]. Available: https://bitcoin.org/bitcoin.pdf

[28] J. Liu, Y. Shi, Z. M. Fadlullah, and N. Kato, “Space-air-ground integrated
network: A survey,” IEEE Communications Surveys and Tutorials,
vol. 20, no. 4, pp. 2714–2741, 2018.

[29] N. Kato, Z. M. Fadlullah, F. Tang, B. Mao, S. Tani, A. Okamura, and
J. Liu, “Optimizing space-air-ground integrated networks by artificial
intelligence,” IEEE Wireless Commun., vol. 26, no. 4, pp. 140–147,
2019.

[30] J. Li, H. Lu, K. Xue, and Y. Zhang, “Temporal netgrid model-based
dynamic routing in large-scale small satellite networks,” IEEE Trans.
Vehicular Technology, vol. 68, no. 6, pp. 6009–6021, 2019.

[31] H. Zhou, N. Cheng, J. Wang, J. Chen, Q. Yu, and X. Shen, “Toward
dynamic link utilization for efficient vehicular edge content distribution,”
IEEE Transactions on Vehicular Technology, 2019.

[32] S. Biswas, K. Sharif, F. Li, B. Nour, and Y. Wang, “A Scalable
Blockchain Framework for Secure Transactions in IoT,” IEEE Internet
of Things Journal, vol. 6, no. 3, pp. 4650–4659, 2019.

[33] F. Gao, L. Zhu, M. Shen, K. Sharif, Z. Wan, and K. Ren, “A blockchain-
based privacy-preserving payment mechanism for vehicle-to-grid net-
works,” IEEE Network, vol. 32, no. 6, pp. 184–192, 2018.

[34] R. Sharma and S. Chakraborty, “B2VDM: blockchain based vehicular
data management,” in 2018 International Conference on Advances in
Computing, Communications and Informatics, ICACCI 2018, Bangalore,
India, September 19-22, 2018, 2018, pp. 2337–2343.

[35] M. Li, L. Zhu, and X. Lin, “Efficient and privacy-preserving carpooling
using blockchain-assisted vehicular fog computing,” IEEE Internet of
Things Journal, pp. 1–1, 2019.

[36] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair
protocols,” in Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014,
Proceedings, Part II, 2014, pp. 421–439.

[37] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek,
“Secure multiparty computations on bitcoin,” in 2014 IEEE Symposium
on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014,
2014, pp. 443–458.

[38] R. Kumaresan and I. Bentov, “How to use bitcoin to incentivize correct
computations,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, Scottsdale, AZ, USA, Novem-
ber 3-7, 2014, 2014, pp. 30–41.

[39] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in IEEE Symposium on Security and Privacy, SP 2016, San
Jose, CA, USA, May 22-26, 2016, 2016, pp. 839–858.

[40] L. Li, J. Liu, L. Cheng, S. Qiu, W. Wang, X. Zhang, and Z. Zhang,
“Creditcoin: A privacy-preserving blockchain-based incentive announce-
ment network for communications of smart vehicles,” IEEE Trans.
Intelligent Transportation Systems, vol. 19, no. 7, pp. 2204–2220, 2018.

[41] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren, “Searching
an encrypted cloud meets blockchain: A decentralized, reliable and fair
realization,” in 2018 IEEE Conference on Computer Communications,
INFOCOM 2018, Honolulu, HI, USA, April 16-19, 2018, 2018, pp. 792–
800.

[42] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in
Advances in Cryptology - CRYPTO 2004, 24th Annual International
CryptologyConference, Santa Barbara, California, USA, August 15-19,
2004, Proceedings, 2004, pp. 41–55.

[43] R. Li, A. X. Liu, A. L. Wang, and B. Bruhadeshwar, “Fast range query
processing with strong privacy protection for cloud computing,” PVLDB,
vol. 7, no. 14, pp. 1953–1964, 2014.

[44] G. Wood. (2014) Ethereum: A secure decentralized generalized
transaction ledger. [Online]. Available: http://gavwood.com/paper.pdf

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 26,2020 at 04:15:24 UTC from IEEE Xplore.  Restrictions apply. 

https://bitcoin.org/bitcoin.pdf
http://gavwood.com/paper.pdf


0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2020.2984621, IEEE
Transactions on Vehicular Technology

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 14

[45] N. Szabo. (1994) Smart contracts. [Online]. Available: http://szabo.best.
vwh.net/smart.contracts.html

[46] J. Katz and Y. Lindell, Introduction to Modern Cryptography, Second
Edition. CRC Press, 2014.

[47] A. Yang, J. Weng, N. Cheng, J. Ni, X. Lin, and X. Shen, “Deqos attack:
Degrading quality of service in vanets and its mitigation,” IEEE Trans.
Vehicular Technology, vol. 68, no. 5, pp. 4834–4845, 2019.

[48] L. Wang, X. Shen, J. Li, J. Shao, and Y. Yang, “Cryptographic primitives
in blockchains,” J. Network and Computer Applications, vol. 127, pp.
43–58, 2019.

Can Zhang received his B.E. (Bachelor of Engineer-
ing) degree in Computer Science & Technology from
Beijing Institute of Technology, Beijing, China, in
2017. He is currently a Ph.D. student at the School of
Computer Science & Technology, Beijing Institute
of Technology. His current research interests include
security & privacy in VANET, cloud computing
security, and blockchain technology.

Liehuang Zhu received his Ph.D. degree in com-
puter science from Beijing Institute of Technol-
ogy, Beijing, China, in 2004. He is currently a
professor at the School of Computer Science and
Technology, Beijing Institute of Technology. His
research interests include security protocol analysis
and design, group key exchange protocols, wireless
sensor networks, cloud computing, and blockchain
applications.

Chang Xu received her Ph.D. degree in computer
science from Beihang University, Beijing, China, in
2013. She is currently an associate professor at the
School of Computer Science and Technology, Bei-
jing Institute of Technology. Her research interests
include security & privacy in VANET, and big data
security.

Chuan Zhang received his bachelor’s degree in net-
work engineering from Dalian University of Tech-
nology, Dalian, China, in 2015. He is currently a
Ph.D. student at the School of Computer Science
and Technology, Beijing Institute of Technology.
His current research interests include secure data
services in cloud computing, security & privacy in
IoT, and big data security.

Kashif Sharif [M’08] received his MS degree in
information technology in 2004, and PhD degree
in computing and informatics from University of
North Carolina at Charlotte, USA in 2012. He is
currently an associate professor at Beijing Insti-
tute of Technology, China. His research interests
include information centric networks, blockchain &
distributed ledger technologies, wireless & sensor
networks, software defined networks, and data center
networking. He also serves as associate editor for
IEEE Access.

Huishu Wu received his Bachelor degree in Infor-
mation management of Computer Science in Hebei
Normal University, and received the Master degree
in management in China University of Political
Science and Law (CUPL) and the Master degree
in University of Montreal (UDEM). Since 2017, he
pursues his doctoral study in University of Montreal.
His research interest is in the area of data security
& privacy in VANETs, and data governance.

Hannes Westermann is a Technologist. He has
always had a strong passion for technology. He
is also a researcher at the Cyberjustice Laboratory
where he is leading the JusticeBot project, which
aims to predict court case outcomes using artificial
intelligence. His research interest is in the area of
data analysis, data security, and data governance.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 26,2020 at 04:15:24 UTC from IEEE Xplore.  Restrictions apply. 

http://szabo.best.vwh.net/smart.contracts.html
http://szabo.best.vwh.net/smart.contracts.html

