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Abstract—Automatic classification of sensitive content in remote
sensing images, such as drug crop sites, is a promising task, as it
can aid law-enforcement institutions in fighting illegal drug dealers
worldwide, while, at the same time, it can help monitor legalized
crops in countries that regulate them. However, existing art on de-
tecting drug crops from remote sensing images is limited in some
key factors, not taking full advantage of the available hyperspectral
information for analysis. In this paper, departing from these meth-
ods, we propose a data-driven ensemble method to detect drug sites
from remote sensing images. Our method comprises different con-
volutional neural network architectures applied to distinct image
representations, which are able to represent complementary char-
acterizations of such crops. To validate the proposed approach,
we considered in our experiments a dataset containing Cannabis
Sativa crops, spotted by police operations in a Brazilian region
called the Marijuana Polygon. The results in this dataset show
that our ensemble approach outperforms other data-driven and
feature-engineering methods in a real-world experimental setup,
in which unbalanced samples are present and acquisitions from
different places in the same region are used for training and test-
ing the methods, highlighting the promising use of this solution to
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aid police operations in detecting and collecting evidence of such
sensitive content properly.

Index Terms—Convolutional neural networks (CNNs), deep
learning, detection of drug crops, sensitive remote sensing
analysis.

I. INTRODUCTION

S EVERAL studies demonstrate how the use of illicit drugs,
such as Diamorphine (a.k.a. Heroin) and Cannabis Sativa

(a.k.a. Marijuana), severely affects the human body [1]–[3]. In
the specific case of Cannabis Sativa, the ease of manufacturing
of such drug makes it the most consumed drug worldwide, being
cultivated in more than 130 countries [4]. Unlike other drugs, it
does not require specific weather conditions for cultivation. This
makes the inspection by security forces of countries that forbid
this drug’s use a difficult task, as any place can be a potential pro-
ducer. According to the 2009 United Nations Office of Drugs and
Crime World Drug Report [5], the total area of such crops was
estimated between 200 000 and 406 000 hectares, which high-
lights the magnitude of the problem of monitoring such amount
of land cover. To minimize such problem, some governments are
controlling the commerce of such drug, regulating places where
it can be consumed and even the land area allowed for its cul-
tivation [6]. Hence, a solution that aids the remote monitoring
of such crops is paramount, as it could be used to automatically
acquire evidence in countries that forbid these crops and also to
control plantation areas in countries that regulate them.

The use of image processing techniques to help identify sen-
sitive content in images has been touched by the scientific lit-
erature in recent years. Examples of such applications include
detecting nudity [7], [8], child pornography [9], [10], covert pho-
tos [11], [12], among others. Leveraging these approaches in a
real-world scenario could aid law-enforcement agencies in col-
lecting crime evidence more effectively and more accurately, as
thousands of images could be investigated in a short period with
reduced human intervention. However, even with a wide range
of tools that make available remote sensing images with low as-
sociated costs or even for free (such as Google Maps and Baidu
Maps), limited effort has been spent by the scientific literature
on detecting sensitive remote sensing data such as drug sites.
Although there are some applications proposed to detect digi-
tal images containing examples of Cannabis Sativa in websites

1939-1404 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-2196-7232
https://orcid.org/0000-0002-0023-1971
https://orcid.org/0000-0002-7625-5689
https://orcid.org/0000-0002-4236-8212
mailto:anselmo@szu.edu.cn
mailto:jwhuang@szu.edu.cn
mailto:siovani@hotmail.com
mailto:pires.ramon@ic.unicamp.br
mailto:sandraeliza@gmail.com
mailto:geise.kss@gmail.com
mailto:anderson.rocha@ic.unicamp.br
mailto:lambert.jal@dpf.gov.br


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

[13]–[15], the dataset considered in those applications does not
consider remote sensing acquisition, not being useful to perform
remote monitoring of such plants covering large areas.

In this paper, we conduct what is, as far as we know, the most
complete study on characterizing sensitive remote sensing data
containing Cannabis Sativa drug crops, by proposing the first
data-driven approach focused on identifying such drug crops
from remote sensing images. We focus on detecting Cannabis
Sativa crops as: 1) they are of particular interest in drug policies
nowadays—being present in more than 130 countries—covering
92% of the world population [4]; 2) the particular difficulty of
classifying such crops, as they can be mixed up with natural
vegetation; and 3) the area regulation intention of some coun-
tries with respect to this kind of crop, which can create an ad-
ditional application to new designed methods. The proposed
technique comprises an ensemble of convolutional neural net-
works (CNNs) with different architectures, applied on contrast-
ing input-image representations that are able to highlight specific
green areas associated with this crop of interest differently from
other Earth materials.

To achieve our goal, we perform an extensive series of exper-
iments in a dataset containing images from a place located in a
specific Brazilian region commonly known for containing such
crops, called the Marijuana Polygon. Experimental results show
that the proposed ensemble approach and one of the proposed
individual CNNs are the first solutions to cross the 90% classifi-
cation accuracy mark with low false positive rates, highlighting
their promising use in real-world settings in which there are un-
balanced samples, photos are taken from different places in the
same region and various acquisition conditions can happen.

In short, the main contributions of this paper are as follows.
1) We introduce what is, as far as we know, the first pub-

lic dataset of remote sensing images containing Cannabis
Sativa crops from real police operations. This dataset was
created with the collaboration of the Brazilian Federal Po-
lice, which provided information about locations and dates
where these crops were found in a Brazilian region referred
to as the Marijuana Polygon.

2) We propose a CNN ensemble tailored to Cannabis Sativa
drug crops’ identification. The proposed approach relies
on a CNN that processes the output of different CNN ar-
chitectures fed with two image representations: the false-
color image transform and near-infrared.

3) We compare the proposed approach with other 22 meth-
ods, which rely on classical feature engineering represen-
tations, and five data-driven baselines, posing our work
likely as the most complete comparative study on remote
sensing drug crop image classification to date.

Finally, for reproducibility purposes, the dataset and the
source-code related to this paper are available at IEEE DataPort1

and Github,2 respectively, fostering the development of other ap-
proaches focused on drug crop detection using remote sensing
imagery.

1http://dx.doi.org/10.21227/H2WD42
2http://www.github.com/anselmoferreira/remote-sensing-sensitive-analysis

The remaining of this paper is organized as follows. Section II
shows some basic concepts about deep learning through CNNs.
Section III shows some related work on remote sensing crops
classification, and Section IV presents the dataset we created
for this application. Section V presents the proposed approach.
Section VI reports the experimental setup used to validate the
discussed techniques, while Section VII shows the experimental
results. Finally, Section VIII concludes this paper and points out
future research directions.

II. BASIC CONCEPTS

Neural networks in which their learnable layers are designed
to perform convolution in input signals are called CNNs. The
most common operation in CNNs is the convolution, which op-
erates at each (x, y) pixel. Convolutional layers in CNNs are
specified by a certain number of filters (or kernels), K, along
with additive biases, b, for each filter. These layers operate by
computing the convolution of the input-images with each of
those filters, adding one bias per output image. Then, activation
functions are applied to all the pixels in the output images, also
called feature maps. The feature map o, which is the output of a
convolution, is calculated as

o(x, y) = σ((K ∗ I)x,y + b) (1)

where σ is the activation function, K the convolution filter, I
the input image, and b the bias.

Typical hyperparameters that a CNN architect must think of
include: 1) number of filters and bias terms to be used in each
convolutional layer (depth); 2) filter size (width and height);
3) filter offset in image pixels to apply the next convolution in
the input image (also called stride); and 4) padding factor, to
control the spatial sizes of feature maps’ volumes.

Loss functions are used in CNNs to measure the errors and to
update filter weights in the training step. They work by compar-
ing the ground-truth of the training set and the predicted values
of them by the CNN. The most common used loss function,
which is also of interest in this paper is the cross-entropy loss,
defined as

L = − 1

n

n∑

i=1

|C|∑

k=1

Y
(i)
k log Ŷ

(i)
k (2)

where n is the number of training samples, |C| the number of
classes, Yk the observed label of the training sample, and Ŷk the
predicted label for the training sample.

After defining the loss function, the layer parameters (weights
and bias terms) must be found in such a way that they minimize
the loss, thereby generating the most precise CNN as possible for
classification procedures. Finding these parameters is commonly
done using gradient descent methods.

Operations done by convolutional and fully connected layers
are not typically meant to be the only operations of a CNN. Thus,
several other layers, focusing on diverse auxiliary operations,
can also be used and organized differently along with convo-
lutional and fully connected layers, in such a way to generate
different CNN architectures suitable for specific applications.

http://dx.doi.org/10.21227/H2WD42
http://www.github.com/anselmoferreira/remote-sensing-sensitive-analysis
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Some of these auxiliary layers are the pooling layers, activation
layers, dropout layers, softmax layers, among others.

Different CNN architectures have been proposed in prior art
for various problems over the years, using for that several combi-
nations of layers, initialization methodologies, and optimization
algorithms, such as the VGG network [16], RESNET [17], IN-
CEPTION (or GoogleLeNet) [18], DENSENET [19], among
others. We show later in this paper how such deep networks can
be useful for the problem presented herein.

III. RELATED WORK

A wide range of approaches has been proposed in the lit-
erature to identify specific crops from remote sensing images.
In this section, we subdivide the related work discussion in ap-
proaches focused on identifying general crops of interest and ap-
proaches focused on detecting drug crops from remote sensing
images.

Approaches focused on identifying the crops of interest typ-
ically apply the investigation on specific image channels and
image transformations. Santoso et al. [20] used spatial and mor-
phological filters on false-color images to detect and count oil
palm trees. Camps-Valls et al. [21] carried out a comparative
study of using support vector machines (SVMs) on hyperspec-
tral image pixels to identify different crops, comparing this clas-
sifier to neural and fuzzy classification methods. They concluded
that SVMs yield better outcomes regarding accuracy, simplic-
ity, and robustness. A similar conclusion was drawn by Khatami
et al. [22] in a very comprehensive study on the state-of-the-
art supervised pixel-based methods for land cover mapping. An
interesting tool was proposed by Munoz-Mari et al. [23] to vali-
date several algorithms of land cover mapping, by making avail-
able 43 remote-sensing image datasets containing several plan-
tation areas. Several other approaches have used transformed
pixels as input to classification tools [24], [25], feature selection
[26], [27], active learning [28], [29], ensemble of classifiers [30],
[31], visual dictionaries [32], [33], and CNNs [34], [35]. More
details about common crop-detection approaches can be found
in [36].

In the case of detecting drug plantations in remote sensing im-
ages, few solutions have been explored to date. For the special
case of Cannabis Sativa crops, the pioneer work of Daughtry and
Walthall [37] analyzed the spectral signatures of such crops. In
a later work, Walthall et al. [38] proposed a simulation model of
this plant to estimate when farmers would be on site, as this crop
requires special treatment. In another work, Walthall et al. [39]
tackled the problem of similar spectral signatures of Cannabis
Sativa leaves and other plants by proposing spatial signatures,
using edge and Fourier analysis of Cannabis Sativa and other
vegetation leaves. Thiessen [40] showed that, in a specific region
in Canada, the Cannabis Sativa spectral signature is distinguish-
able from those of other types of vegetation using IKONOS,
Quickbird, and CASI remote sensors. Azaria et al. [41] used
hyperspectral spectroscopy and feature reduction to find signif-
icant spectral signatures of this crop. Finally, the work of Lisita
et al. [42] relied on region-based semiautomatic classification
using multiscale segmentation to identify drug crops.

In closing, we highlight that approaches focused on the identi-
fication of drug sites, such as Cannabis Sativa plantation areas,
are often limited because: 1) some of them carry the spectral
analysis not using remote sensors but using local hyperspectral
spectroscopy only, thus not considering atmospheric variations
that can happen in the acquisition procedure; 2) most of them
rely on spectral signatures from pixels as features, which can be
very noisy and error prone; 3) additionally, the classification of
millions of pixels from a testing image can be computationally
expensive; and 4) some methods, especially the one proposed
by Lisita et al. [42], require semiautomatic classification, which
can be too subjective and require an expert user to help classify
samples. We discuss later in this manuscript how our proposed
approach deals with such issues. However, to help understand
the proposed approach, we discuss the dataset first in the next
section.

IV. DATASET

The localization information of sensitive remote sensing data
such as drug sites is not easy to acquire without the collaboration
of law-enforcement organizations. This research is the result of
a collaborative work with the Federal Police of Brazil, which
provided us with annotations containing information from 800
places in a specific region in Brazil, called the Marijuana Poly-
gon, where police operations against illegal crops took place in
the past. The annotations contain the information of these areas
from a period ranging from the years 2003 through 2012, such
as date of the police operation, latitude, longitude, type of local
(continent or island), city, area, number of plants, descriptions
about the possible vegetation used to work as camouflage (i.e.,
to visually hide the illegal crops), among others.

After some data cleaning, we found the information to com-
mercially acquire one high-resolution satellite image that covers
the area of interest, composed by mosaicking four single images
from different areas at the dates indicated in the annotations.
The images cover 100 km2, captured by an IKONOS sensor
in September of 2008. They are composed by four multispec-
tral bands (red, green, blue, and near-infrared) and a panchro-
matic band, with 0% cloud covering. The acquisition angle was
29.3◦, and the spatial resolution was 3.2 m on each multispec-
tral bands and 0.82 m in the panchromatic band. The images
are in the GEOTIFF format with 11-b radiometric resolution,
with UTM/WGS84 projection and orbital altitude of 684 km.
The images are also accompanied by geometrical correction and
RPC—rational polynomial coefficients—calculated from cam-
era and sensor information.

Some of the four mosaicking images showed color variation
in the scanning order, as the area of 100 km2 was covered in
four satellite sweeps, with the illumination due to the sun vary-
ing during such sweeps. Although the sun angle azimuth and sun
angle elevation showed a maximum difference of 1 min between
the acquisitions, we found different values of scan azimuth and
nominal collection azimuth in the images. To minimize the dif-
ferences of scan direction and acquisition azimuths, we applied
the relative radiometric normalization [43], [44] method. For
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Fig. 1. Different versions of the image used to acquire the dataset. (a) Original image from the IKONOS satellite, (b) radiometric normalized, (c) radiometric
normalized near-infrared channel, and (d) radiometric normalized false-color representation

that, we used the histogram-matching radiometric normaliza-
tion approach, as it shows the smallest root mean square error
for this sensor, as pointed out by Hong and Zhang [45].

The histogram-matching algorithm assumes that, with a large
scene, the distribution of the intensity of Earth’s radiation in-
cident on each detector will be similar. Given two images, the
reference and target images, we compute their histograms, and
the method transforms the target image’s histogram distribution
into the specified histogram of the reference image, so that the
radiometric appearance of the image to be transformed and the
reference image become similar. Rakwatin et al. [46] describe
the histogram-matching maps with the cumulative distribution
function (CDF) of each detector to a reference CDF. A normal-
ization lookup table is created for each detector to map every
digital number (DN) x, for each sensor, onto the referenced DN
x′. If pi(x) is the histogram of the output from the ith detector,
the CDF of the ith detector Pi(x) is

Pi(x) =

x∑

t=0

pi(t). (3)

According to Rakwatin et al. [46], the CDF is a nondecreasing
function of x. The basic assumption is that the CDF of each
detector is a monotonic function. For each output value x of the
ith detector, the value x should satisfy the following:

Pr(x
′) = Pi(x

′) (4)

where the subscript r refers to the reference detector. Therefore,
a modified DN x′ can be obtained as

x′ = P−1
r (Pi(x)). (5)

To apply the histogram-matching radiometric normalization
in our images, we chose, from the available images from the
mosaic, the less corrupted one as our reference. Fig. 1 shows
the original image used as the base to build the dataset and its
variations used in the experiments. We use the near-infrared and
false-color representations of images (see Fig. 1(c) and (d), re-
spectively) to extract 30× 30 resolution patches for the dataset.
The majority of the crop sites are located on the islands located
in the San Francisco river, which crosses the Marijuana Polygon.
This happens for two reasons: 1) the dry weather of the Brazilian
Caatinga, which makes it more difficult for the farmers to find
water on land; and 2) by using islands as crop sites, the accessing
and monitoring from security forces are harder and expensive.
So, for patches’ extraction, we considered only green areas and
soil, removing patches containing river and buildings. We con-
sidered 126 areas containing Cannabis Sativa crops in advanced
growth stage from the provided annotations and divided them
into 63 regions on a set called bag1 (patches from the islands
on the left side of the river), and 63 regions on a set called bag2
(patches from the islands on the right side of the river). As the
area covered by bag1 is smaller than that covered by bag2, when
we created the subsets of the patches, we obtained 1149 and 9277
patches, respectively, creating a final dataset of 10 426 images
of size 30× 30, divided in the following three sets.

1) Near_1: These patches contain at least 75% of Cannabis
crops pixels. We label these patches as positive samples.
As the problem herein is a classification problem of very
unbalanced classes, we found that 75% of marijuana pix-
els is a good parameter to choose the maximum num-
ber of relevant positive patches, in such a way to also
avoid machine-learning classifier confusions as much as
possible.
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Fig. 2. Proposed data-driven fusion approach to detect the drug sites in remote sensing images. First, small patches from different input image-representations
selected in a preprocessing step are fed to specific pretrained custom-tailored CNNs with different architectures. In the fully connected layer of these CNNs, feature
vectors are extracted, concatenated, normalized, and further fed to another CNN for decision making.

2) Near_2: These patches contain green vegetation used as
camouflage to hide positive samples and patches contain-
ing less than 75% of Cannabis crops pixels. We label these
patches as negative samples.

3) Near_3: These patches contain the rest of Earth materials
(except water and buildings), including the native vegeta-
tion of the Brazilian Caatinga. They are also considered
negative samples.

Following this classification, we have bag1 with 139 positive
and 1010 negative samples, and bag2 with 1028 positive samples
and 8249 negative samples. In the next section, we discuss how
to deal with this limited amount of data to train our proposed
data-driven solution.

V. PROPOSED APPROACH

Our proposed approach herein, whose pipeline we show in
Fig. 2, tackles the issues previously discussed in the related work
section by focusing on the following aspects: 1) image acquisi-
tion by satellites; 2) patch-based analysis rather than pixel-wise
analysis, in order to reduce the number of samples to be charac-
terized and classified each time; 3) multiple and complementary
input representations, which will highlight the areas of interest
differently; 4) multiple data-driven characterization of the in-
puts, used to explore the discriminating characteristics of each
representation in a complementary way; and 5) classification
considering a normalized space, as the features come from dif-
ferent sources.

The proposed method works on image patches and combines
the characterization output of different CNN architectures, ap-
plied over different image representations. These image repre-
sentations were chosen in such a way that they highlight dif-
ferently, but in a complementary way, the image’s chlorophyll
difference between the crop of interest and other Earth materials,
including the native vegetation around the cropping area. The
pipeline of the proposed method works in three steps: Step #1 is
used as a preprocessing step, selecting and organizing channels
in order to highlight green areas in a complementary way. Then,
Step #2 will use specific pretrained deep-learning networks at the
each of these representations, in order to learn complementary
features that can better discriminate these crops. Finally, Step #3
uses another deep-learning network to classify these features. In
the following sections, we show more details of the proposed

Fig. 3. Mean histogram of positive samples (i.e., Cannabis Sativa crops) and
negative samples (i.e., non-Cannabis Sativa crops) in the near-infrared channel
of the IKONOS 30× 30-pixel remote sensing image patches.

data-driven solution to the detection of Cannabis Sativa crops
in remote sensing images.

A. Choice of Multiple Representations (Step #1)

To find out which inputs would be best for data-driven anal-
ysis of Cannabis Sativa crop’s identification, we carried out an
investigation in the dataset, as already described in Section IV,
which is composed of four-channel IKONOS image patches. To
probe possible discriminative features, we calculated the mean
histogram of near-infrared channel in positive (i.e., Cannabis
Sativa crops) and negative remaining areas. This helps us find
out whether there is any spectral difference between Cannabis
Sativa and non-Cannabis Sativa crops.

Fig. 3 shows that there is a discriminative feature in the near-
infrared channel on higher bins to identify Cannabis Sativa crops
in remote sensing images. This highlights the fact that, on the
near-infrared band, the mean values of Cannabis Sativa crops
are higher than those in other Earth materials. This can be ex-
plained as Cannabis Sativa leaves have a specific green emerald
color and unusual shape, which was shown in previous work to
have a peculiar spectral signature [37]–[39]. As the near-infrared
channel is useful to discriminate different kinds of plants [47],
the difference of Cannabis Sativa vegetation from other Earth
materials tends to be detectable in this channel. However, as we
are considering camouflage areas that contain less than 75% of
the crops of interest (Near_2 patches), there is some overlap in
these higher bins. So, to implement a robust approach to tackle
classification errors, in our proposed method, we chose to create
an ensemble approach, focused on different representations that
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Fig. 4. Submodel #1 CNN architecture applied on 28× 28 near-infrared image patches for Cannabis Sativa crop detection. We train this network from scratch
and use it as a feature extractor to discriminate positive and negative samples using near-infrared image representations as input.

highlight differently green areas. These representations are then
applied to different data-driven approaches that can work com-
plementing each other, in order to avoid individual classification
errors.

Upon these findings, we chose to focus on the following two
image representations for our data-driven approach.

1) Near-infrared: This is the fourth multispectral band ac-
quired by an IKONOS satellite. The light wavelength it
captures is between 0.75 and 1.4 μm.

2) False color: The false-color image representation is
widely used to show images in color, acquired on visi-
ble and invisible parts of the electromagnetic spectrum.
It is typically used to depict an object in colors that dif-
fers from a true-color image. In contrast to a normal true-
color image, the false-color image sacrifices natural color
disposition in order to ease the detection of features that
are not readily discernible otherwise. The simplest way to
create a false-color image is by choosing and reordering
spectral bands, according to the physical properties of the
object under investigation. We chose the false-color image
representation using the following mapping: BGRN →
NRG, where N , R, and G are the near-infrared, red, and
green image channels, respectively, with the blue band B
being discarded. This representation is commonly called
the vegetation in red false-color image and is widely used
in remote sensing image processing [48].

B. Use of Multiple Network Architectures (Step #2)

With multiple input-image representations available, we de-
vise two CNN architectures to learn complementary features,
directly from these representations and from available training
data (data-driven methods). In the next paragraphs, we discuss
the adopted architectures—Submodels #1 and #2.

1) Submodel #1: This model was thought of to process near-
infrared image representations and is built to process 28 ×
28 image patches in its input layer. This input-image size is
thought of to minimally represent the properties of our interest
in a possible plantation area. The network’s architecture com-
prises four main layers (two convolutional and two fully con-
nected) and eight auxiliary layers. This network is trained from
scratch to find out the discriminative features on training and
validation data. After training the network, any 28× 28-pixel
input can be represented with 128-dimensional features, as the
data-driven description for near-infrared images. These features
are extracted from the dropout layer located after the output

activation of the last but a fully connected layer of the trained
network. Fig. 4 shows the disposition of layers in the proposed
network.

We found the best parameters of the proposed Submodel #1
after some validation experiments, using 90% of the training
data to train and 10% of the training data for validation, and
they are as follows. Submodel #1 convolutional layer weights
were initiated with the Xavier initialization method from Glorot
and Bengio [49]; the learning rate was set to 10−2 and was kept
constant. The optimization algorithm chosen was the ADAMAX
of Kingma and Ba [50] with ε = 10−8. This network was trained
using a batch size of 32 images through 20 epochs. The loss func-
tion chosen was the categorical cross entropy. Fig. 4 shows two
dropout layers in the network: The first one eliminates neurons
with 25% of probability and the last one with 50% of probability.
For reference, there is no batch normalization in this network,
and there is just one pooling layer, extracting the maximum value
in a 2× 2 window.

Submodel #1 network is somewhat inspired on the LENET
[51] CNN for digit recognition, as it also deals with the same kind
of input (grayscale 28× 28-pixel patches). However, there are
some key differences in the proposed network structure, train-
ing steps, and final weights because of the following reasons:
1) our proposed Submodel #1 is trained with different data, re-
sulting in different filter weights; 2) weights are initialized with
Xavier initialization [49] instead of using a Gaussian distribu-
tion; 3) network hyperparameters are different from the original
LENET, and the adopted optimization algorithm is the ADA-
GRAD [52] rather than the steepest gradient descent; 4) we use
dropout layers to avoid overfitting; and finally 5) the soft-max
layer here identifies two classes of interest, rather than ten.

2) Submodel #2: This model was thought of to process false-
color image representations, and its input layer accepts 32
× 32 × 3 image patches. This is a very deep architecture with
41 main layers (39 convolutional and two fully connected), com-
plemented by batch-normalization layers, activation layers, and
concatenate layers whenever necessary, plus 3 pooling layers,
arranged in an architecture such as the one shown in Fig. 5.

This architecture comprises a set of dense blocks, each of
which contains several composite functions. The composite
functions are formed by a batch-normalization layer, an acti-
vation (RELU) layer, and a convolutional layer, and the output
of each composite function is concatenated with the outputs and
inputs of the previous composite functions. The network com-
prises three dense blocks, with 13, 13, and 12 composition func-
tions, respectively. The first dense block will process 32× 32
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Fig. 5. Submodel #2 architecture applied on 32× 32 false-color image patches for Cannabis Sativa crop detection. The architecture is mainly composed of
several composition functions, formed by a batch-normalization layer, an activation (RELU) layer, and a convolutional layer, with its output concatenated with
the input and output of the previous composition functions. These composition functions are spread in three dense blocks, containing 13, 13, and 12 composition
functions, respectively. Pooling layers connect the output of a dense block to the input of the next dense block. We train this network from scratch and use it as a
feature extractor to discriminate positive and negative samples, using the false-color image representation as input.

feature maps. After the 13th composition function, an average
pooling layer takes place and yields 16 × 16 feature maps, fur-
ther processed by the second dense block. Another average pool-
ing, after the 26th composition function, returns 8 × 8 feature
maps. After 12 more composite functions from the third dense
block, a batch normalization and activation take place. Then,
a global average pooling will yield 488-dimensional vectors,
which will flow to two fully connected layers for the final pro-
cessing. The first one processes the data yielding 64-dimensional
vectors. The last layer is typically used for classification along
with a soft-max activation function, responsible for predicting
output labels.

As with Submodel #1, this network is also trained from scratch
to find out filter weights capable of discriminating Cannabis
Sativa and non-Cannabis Sativa image patches. After train-
ing the network, any 32× 32 false-color input patch can be
represented by 64-dimensional features as the data-driven de-
scription for the false-color images. These features are ex-
tracted from the last but one fully connected layer of the trained
network.

Submodel #2 convolutional weights were initiated with the
initialization method of He et al. [53]; the initial learning rate
was set to 10−2 and reduced by a factor of

√
0.1 when the vali-

dation loss stops improving after 10 epochs. The lower bound of
the learning rate was fixed to 0.5× 10−6. The optimization algo-
rithm chosen was the ADADELTA of Zeiler [54], with ρ = 0.95
and ε = 1e− 08 as the regularization constant; the learning rate
decay was defined as constant. Submodel #2 network was trained
using a batch size of 64 images with the best validation loss
defining the number of epochs after 300 total epochs. The cho-
sen loss was the categorical cross entropy as with our proposed
Submodel #1 CNN. As discussed earlier, there are three average
pooling layers and 39 batch-normalization layers. There are no
dropout layers in the network. The proposed network is some-
what inspired on the DENSENET [19] network, as the input for
this network consists of 32× 32-pixel RGB patches, and fea-
ture maps from previous dense blocks are used in concatenation
with the output of the following dense blocks. However, there are
some key differences as follows on the network structure, train-
ing steps, and final weights: 1) the proposed Submodel #2 is
trained with different data, resulting in different weights; 2) net-
work hyperparameters are different from original DENSENET,
and the adopted optimization algorithm is ADADELTA [54];
and 3) our fully connected layer extracts 64-dimensional vectors

from the last, but one RELU activation layer and our soft-max
layer is set to identify two classes of interest.

Because the dataset used for this problem is naturally very
unbalanced in the two classes and because our dataset has origi-
nally only 10 426 samples, we used the following procedure for
data augmentation when training CNNs on these data, as CNNs
normally require considerable amount of data for training. We
perform a series of data-augmentation operations in the positive
(i.e., Cannabis Sativa) data, with horizontal flips, vertical flips,
rescales, zooms, and shear effects in order to give more positive
data to the networks. Then, given a batch size BS, we randomly
chose BS

2 positive patches and BS
2 negative patches from the

augmented positive data and original negative data to create a
batch of balanced samples to be processed by our CNNs. Do-
ing so 10 000 times with BS = 32 in the initial training data,
leads to 320 000 training images. We did the same 1000 times in
the initial validation data to generate 32 000 validation images.
Considering bag1 and bag2 images, our final dataset contains
(320 000 + 32 000) × 2 = 704 000 images for training and val-
idating Submodels #1 and #2. By using this procedure we may
end up with some repeated images inside the training or inside
the validation dataset, but they are never found in the same batch
of images, and all the batches are balanced. It is needless to say
that all the performed operations are for training the networks
and do not mix training, validation, and testing data, whatsoever.
To be suitable for the input layers of our proposed CNNs, we
resized all the 30× 30 images, using the Lancsoz interpolation
method [55], to be of the same input size of that of Submodels #1
and #2.

C. Classifying Fused Features (Step #3)

After training Submodels #1 and #2 on different image rep-
resentations, our final model uses the generated features of
both the approaches in an early fusion fashion [56], combin-
ing 128-dimensional feature vectors from Submodel #1 and
64-dimensional feature vectors from Submodel #2, generating
128 + 64 = 192-dimensional feature vectors for each input im-
age. The final feature vector describes how complementary the
two image representations are, according to the two different
data-driven feature extractors.

As the final feature vector comes from different feature ex-
tractors applied on different image representations (i.e., different
domain representations), the range of all the features should be
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Fig. 6. Submodel #3 architecture focused on classifying normalized 192-dimensional vectors inputs from Submodels #1 and #2.

Fig. 7. Differences of the proposed 192-dimensional vectors for characterizing Cannabis Sativa and non-Cannabis Sativa samples. The differences illustrated in
this figure show that the two classes have distinct values in some key positions.

normalized in such a way that each feature contributes approx-
imately in a proportional way to the final feature vector. We
chose to use the min–max normalization [57] method, which
normalizes a vector in the following way:

f ′
i =

fi − min(fi)
max(fi)− min(fi)

, i ∈ N (6)

where f ′ is the final normalized vector, f the original vector, and
min(fi) and max(fi) are the minimum and maximum values of
vector f , respectively.

This normalization is an essential preprocessing step, which
allows a classification algorithm to focus on structural similari-
ties/dissimilarities of feature vectors, rather than on amplitude-
driven ones. Fig. 7 shows the confidence-interval differences
over the distribution of our 192 normalized neurons proposed
CNN ensemble, considering the Cannabis Sativa and non-
Cannabis Sativa crops. It is possible to realize from this figure
that high peaks of differences are found in some features. They
are present in the first 128 features of Submodel #1 and also in
the remaining 64 from Submodel #2.

Finally, the decision making is carried out by another CNN,
whose architecture is shown in Fig. 6. This new CNN, which
we call Submodel #3, is composed of a batch-normalization
layer, a convolutional layer with a filter of length 32 activated

by RELU, a fully connected layer with 160 neurons also acti-
vated by RELU, a 50% dropout operation, a flatten layer, and
a fully connected layer followed by a softmax function, which
will be used to classify the input. The CNN is trained using
the RMSPROP optimization algorithm [58] on a batch size of
32 images. The loss function chosen was the categorical cross
entropy, and the initial learning rate was set to 0.01, which is
reduced by a factor of

√
0.1 when the validation loss stops im-

proving after 10 epochs. The lower bound of the learning rate
was fixed to 0.5 ×10−6, and the best validation loss will define
the number of epochs after 100 total epochs.

Organizing the pipeline this way, we have a stronger classifier
applied on the 192-dimensional vectors. This classifier will ex-
tract by convolutions the low-level details that discriminate the
feature distributions of both the classes, rather than relying just
on the distribution of vectors around a hyperplane as it happens
with SVM classifiers. We show later in this paper that processing
neuron activation differences from two CNNs by another CNN
is effective in separating the classes of interest.

VI. EXPERIMENTAL SETUP

In this section, we present the experimental setup used to val-
idate the proposed approach along with state-of-the-art feature
engineering and data-driven image classification methods used



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FERREIRA et al.: EYES IN THE SKIES: A DATA-DRIVEN FUSION APPROACH TO IDENTIFYING DRUG CROPS FROM REMOTE SENSING IMAGES 9

as baselines. We discuss the validation procedure with metrics
and statistical tests, existing solutions (used to compare to ours),
and implementation aspects of the proposed methods.

A. Metrics and Statistical Test

To compare the proposed algorithm with some baselines in
the literature, we chose an experimental procedure called 2-fold
cross validation, which is composed of two rounds: In the first
one, one part of the dataset is used to train a classifier, and the
other part is used for testing. Then, the parts are switched in the
second round. We report mean metrics after these two rounds,
using bag1 and bag2 images for this validation procedure.

We chose a set of metrics that take into account the unbalanced
nature of this application. The first metric, the true positive rate
(TPR), which is also known as recall, indicates the percentage of
correctly classified positive (i.e., Cannabis crops) regions. We
have

TPR =
TP

TP + FN
(7)

where TP (true positive) represents the number of patches cor-
rectly classified as Cannabis Sativa crops in the test phase and
FN the number of positive samples wrongly labeled as negative.

In a real-world situation, we do not want to send security
forces to wrong places. Thus, an important metric we want to
minimize is the false positive rate (FPR), which indicates the
percentage of incorrectly detected Cannabis Sativa crops. We
have

FPR =
FP

FP + TN
(8)

where FP (false positive) represents the number of negative
patches wrongly classified as positive and TN the number of
correctly labeled negative patches (i.e., non-Cannabis Sativa
crops).

Another metric of interest is the normalized accuracy
(NACC), which gives the quality of detection, based on TPR
and TNR (true negative rate), with the last metric indicating the
percentage of correctly located negative patches. We have

NACC =
TPR + (1− FPR)

2
(9)

where (1− FPR) = TNR.
In a complementary manner, we are also interested in calcu-

lating the precision, which is the fraction of the events in which
the classifier correctly classified the Cannabis Sativa crops out
of all the instances classified as such, accurately or wrongly. We
have

Precision =
TP

TP + FP
. (10)

Finally, the most important metric, which will be used to rank
the results, is the f-measure. This measure can be interpreted as
the harmonic mean of precision and recall (i.e., TPR). It reaches
its best value at 1, its worst score at 0, and it is calculated as
follows:

f = 2× Precision × TPR
Precision + TPR

. (11)

A series of statistical tests is performed to check whether the
reported results are significantly different. We chose the Mc-
Nemar [59] statistical test, which is a hypothesis test used to
compare predictive accuracies of two classification models. It is
applied on the outputs of the classification models, and it tests
conditions to reject or accept the null hypothesis, which is as-
suming that the predicted class labels from the two algorithms
have equal accuracy. We used the mid p-value variation of such
test [60].

B. Baselines

In this paper, we carry out a very comprehensive comparative
study on sensitive remote sensing classification by considering
several image descriptors as baselines. We considered for this
paper 17 different feature-engineering classical image represen-
tation approaches, with 6 being texture descriptors applied on
the near-infrared image and 11 color descriptors applied on the
false-color image representation. We also considered five data-
driven state-of-the-art methods, with two of them trained from
scratch and three of them fine-tuned on remote sensing data,
totaling 22 baseline approaches.

As for the texture descriptors, we considered two descriptors
from the work of Ferreira et al. [61], which are the variations
of Gray-Level-Co-occurency Matrices (GLCMs) (we call these
approaches GLCM-MD and GLCM-MD-MS, respectively). Other
GLCMs’ variations considered in this paper are the original
GLCM descriptor from Haralick et al. [62] (we call it GLCM-
HARA) and its variation proposed by Mikkilineni et al. [63] (we
call it GLCM-MIK). Finally, we considered the histogram of the
oriented gradients from Dalal and Triggs [64], which we call
HOG and the local configuration pattern (which we call LCP) of
Zhao and Pietikainen [65].

All the color descriptors considered in this paper are applied
on the false-color image representation and come from a com-
parative study performed by Bianconi et al. [66]. Because of the
space requirements in the manuscript, we selected the follow-
ing color descriptors: three versions of the three-marginal his-
tograms (we call them TMH1, TMH2, and TMH3, respectively)
from Pietikainen et al. [67], a two-marginal histogram (we call
it 2MH) from Lepisto et al. [68], five versions of color statistics
also called soft color descriptors (we call them CS1, CS2, CS3,
CS4, and CS5, respectively) from Kukkonen et al. [69], Co-
Occurrence Matrices and Color Percentiles (COM-CP) from Sil-
ven et al. [70] and Integrative Co-Occurrence Matrices (ICOM)
from Arvis et al. [71].

Finally, we compare our proposed approach with other five
data-driven methods for classification. We trained two networks
from scratch, using our remote sensing data of interest. The first
is a CNN capable of classifying tiny image patches from the
CIFAR dataset (we call it CIFAR), and the other is the RESNET
from He et al. [17] (we call it RESNET). Then, we chose to
fine-tune three networks on the remote sensing data of interest
in this paper: the VGG-16 and VGG-19 networks, proposed by
Simonyan and Zisserman [16] (we call themVGG-16 andVGG-
19, respectively) and the INCEPTION version 3 network from
Szegedy et al. [18] (we call it INCEPTION-V3).
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TABLE I
VALIDATION EXPERIMENT, CONSIDERING bag_1 IMAGES FOR TRAINING,

bag_2 IMAGES FOR TESTING AND VARYING IMAGE CHANNELS

TO TRAIN AND TEST SUBMODEL#1 CNN

C. Implementation Aspects of the Proposed Methods

The implementation of Submodels #1, #2, and #3 fol-
lowed the CNN architectures and characteristics described in
Sections V-B and V-C. After training the CNNs of Submodels
#1 and #2 by using the augmented data discussed previously in
this paper, only the original training and testing data are used to
extract feature vectors to train and test Submodel #3. For this
classifier applied on the original (not augmented) data with very
unbalanced nature, we used the SMOTE [72] approach in order
to balance the number of samples in each class for CNN training.

We consider our approaches individually, classifying im-
ages with individual CNNs (we call these approaches PRO-
POSED_SUBMODEL1 and PROPOSED_SUBMODEL2), and
fusing their descriptions using min–max normalization and clas-
sifying them with Submodel #3 (we call this approach PRO-
POSED_FUSION). To implement the proposed method, we
used the KERAS library in Python [73], and we run our CNNs
on an NVIDIA Tesla K80 GPU.

VII. EXPERIMENTAL RESULTS

In this section, we report results that validate our proposed
approach and compare it with the existing baselines. We start
by investigating the selection of the inputs of our proposed ap-
proach. Then, we show comparative experimental results of our
approach against baseline methods, using hand-crafted and data-
driven solutions. Finally, we include statistical tests to assess the
contribution of our proposed approach in classifying drug sites
in remote sensing images.

A. Inputs of the Proposed Approach

We start the experiments by showing an experiment result that
helped us choose which input to use in each of our input submod-
els (Submodels #1 and #2). For that, we applied our submodels
on different inputs in a validation experiment, considering bag_1
images to train CNNs and bag_2 images to test. Tables I and II
shows the mean metrics of these experiments.

Table I shows that, for this problem of discriminating the
green crops of interest, PROPOSED_SUBMODEL1 better works
on the near-infrared channel. This happens because this network
is designed to work on one-channel images only and because
the near-infrared channel gives the best information possible
about crops, natural vegetation, and other Earth materials. The
promising results from the false-color representation can also
be seen from this table, although this representation must be

TABLE II
VALIDATION EXPERIMENT, CONSIDERING bag_1 IMAGES FOR TRAINING,

bag_2 IMAGES FOR TESTING AND VARYING IMAGE CHANNELS

TO TRAIN AND TEST SUBMODEL#2 CNN

TABLE III
MEAN METRICS CALCULATED AFTER TWO ROUNDS OF EXPERIMENTS OF

Cannabis Sativa CROP CLASSIFICATION AFTER THE 2-FOLD

CROSS-VALIDATION PROCEDURE

NI stands for near-infrared channel and FC for false-color image representation.
The results are ordered by f-measure, and the best metrics are highlighted in
gray.

converted to gray in order to fit the CNN input, losing this way
important information. All the other individual channels result
in significant performance losses.

Finally, the experimental results in Table II highlight that the
false-color image representation showed to be the best image
representation in highlighting the artifacts from illegal crops of
interest in this paper. This happens because the characteristic
green emerald color of Cannabis Sativa is better highlighted
in this NRG color representation, which can make them dis-
criminant, even if considering camouflage crops and natural
vegetation.

B. Comparison With Baselines

We now discuss the comparative experimental results.
Table III shows the experimental results of baseline the hand-
crafted approaches, baseline data-driven descriptors, proposed
data-driven fusion, and individual proposed CNN approaches.

From Table III, we can find that the best texture descriptor con-
sidering the mean f-measure and also the NACC is the multidi-
rectional gray-level co-occurrence matrices statistical descriptor
(GLCM-MD-MS) proposed in [61]. This descriptor performed the
best in classifying near-infrared samples, as it considers more in-
formation using more neighboring directions and scales, which
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will result in more matrices, containing richer texture informa-
tion in which statistics are calculated. The best color descrip-
tor is the three-marginal histograms version 3 (TMH3) from
Pietikainen et al. [67]. This descriptor highlights the spectral
differences between Cannabis Sativa and non-Cannabis Sativa
crops, as shown in Fig. 3, by using histograms after the image
is converted to the Ohta color space [74].

The ability of the CNNs to learn discriminative features from
the data can be seen from the experimental results shown in Ta-
ble III. The RESNET [17] is the best baseline CNN approach, as
its architecture was thought of to feed more data to next layers,
as it fuses information from the previous layers with the output
of the current layers by summing up their feature maps. This
way, the description is richer on false-color images, as more
characterization information is passed to other layers. It is also
worth discussing the poor results of fine-tuned networks on re-
mote sensing data (VGG-16, VGG-19, and INCEPTION-V3).
These networks were not effective in classifying these patches
because the input layers of these networks require larger images,
leading the upscaling of such images to lose too much seman-
tical information. Also, the initial weights used by the network
were thought of to classify another dataset (i.e., IMAGENET
dataset).

The results from Table III show promising results for the pro-
posed approach. The PROPOSED_SUBMODEL1 is the first to
reach higher NACC than all baselines that classify near-infrared
images. However, its false positive detection leaves it behind
RESNET and other feature engineering approaches when con-
sidering the f-measure metric to assess the performance of such
algorithms, as the precision decays with a high false positive
rate.

The method PROPOSED_SUBMODEL2, a CNN applied on
false-color images, showed the best NACC and the best f-
measure if considering only individual approaches. This network
describes well Cannabis Sativa and non-Cannabis Sativa crops,
as its feed-forwarding learning involves concatenating feature
maps from the previous layers, passing them to the following
layers. This way, more and richer information about patches
flow through the network, resulting in a more discriminative
learning process.

Finally, the use of complementary information from mul-
tiple image representations (near-infrared and false-color
image representations) in multiple CNN architectures (PRO-
POSED_SUBMODEL1 and PROPOSED_SUBMODEL2), as pro-
posed in this paper, outperforms all the previous methods. The
complementary information of these two model descriptions de-
creases the false positive rate of PROPOSED_SUBMODEL1 and
PROPOSED_SUBMODEL2 at the same time. This results in a
final model, which showed the highest f-measure for all the ex-
periments (O.78), the highest NACC (92.16%), the lowest false
positive rates and, consequently, the highest TNRs of all the ex-
periments (FPR = 5.87% and TNR = 94.13%). This highlights
the promising use of such proposed method to aid police efforts
in finding and monitoring drug sites.

We also have compared the running time of CNN training,
considering the proposed approaches and baselines CNNs. Such
results can be found in Table IV below.

TABLE IV
RUNNING TIME FOR TRAINING SOME OF THE CNNS

CONSIDERED IN THIS PAPER

NI stands for near-infrared channel and FC for false-color image representation.

From the experiments results reported in Table IV, it can be
seen that the fastest method for training is the submodel PRO-
POSED_SUBMODEL3. This happens, as it is a shallow network
applied on vectors. The second fastest method to train is another
shallow network, the PROPOSED_SUBMODEL1, now applied
on matrices (near-infrared image channels). The slowest meth-
ods are the ones with higher number of layers and complexity,
and trained from scratch. These are the cases of the CIFAR and
INCEPTION-V3 CNNs.

Finally, as our approach PROPOSED_FUSION is com-
posed of three CNNs, two of them being independent (PRO-
POSED_SUBMODEL1 and PROPOSED_SUBMODEL2) and one
applied on the others output (PROPOSED_SUBMODEL3), the
running time of training the proposed approach is the run-
ning time of training the slowest individual CNN (PRO-
POSED_SUBMODEL2) plus the running time of training the
CNN used for classification (PROPOSED_SUBMODEL3). This
results in a total running time of 22258.11 s. This is approxi-
mately the half of the training running time of the networks with
higher complexity, such as the INCEPTION-V3CNN, but with
a superior classification performance, as can be seen from the
results shown in Table III.

C. Statistical Tests

We finally show McNemar statistical tests results in or-
der to assess the contributions of our proposed approach. For
that, we selected the top five best approaches, considering the
best f-measure results from different description methodolo-
gies to compose our top five best approaches. We consider
the best texture descriptor (GLCM-MD-MS), the best color de-
scriptor (TMH3), the best individual CNN trained from scratch
(our PROPOSED_SUBMODEL2), the best CNN fine-tuned on
remote sensing data (VGG-19), and the proposed approach,
using early fusion by normalizing descriptions from PRO-
POSED_SUBMODEL1 and PROPOSED_SUBMODEL2 (PRO-
POSED_FUSION).

After selecting the approaches for the statistical test, we used
the 2-fold cross-validation experiment’s binary classification
outputs to perform two McNemar tests. We show the statisti-
cal tests results from the first experiment, which considers bag1
images for training the classifier and bag2 images for testing the
classifier, in Table V.
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TABLE V
MCNEMAR STATISTICAL TEST RESULTS CONSIDERING THE CLASSIFICATION

OUTPUTS OF THE APPROACHES IN THE FIRST EXPERIMENT

FROM THE 2-FOLD CROSS VALIDATION USED

TABLE VI
MCNEMAR STATISTICAL TEST RESULTS CONSIDERING THE CLASSIFICATION

OUTPUTS OF THE APPROACHES IN THE SECOND EXPERIMENT

FROM THE 2-FOLD CROSS VALIDATION USED

The results in Table V show that our proposed fusion ap-
proach (PROPOSED_FUSION) has statistical significant differ-
ence when compared to all the other approaches considered,
including our proposed individual model on false-color images,
called PROPOSED_SUBMODEL2. Finally, Table VI shows the
statistical test results of the second experiment, which uses bag2
images for training the classifier and bag1 images for testing the
classifier. For this case, the null hypothesis is also rejected when
comparing the performance of our proposed approach against
all other approaches considered, including the second best ap-
proach (PROPOSED_SUBMODEL2).

VIII. CONCLUSION AND FUTURE WORK

Classifying sensitive remote sensing data, such as drug crop
sites, is a challenging task because of several reasons such as:
1) the difficulty of acquiring proper annotated datasets; 2) coping
with acquisition errors; 3) the spectral response similarity of
drug crops and natural green camouflage; and 4) using spectral
response of the remote sensed material only (i.e., pixel values),

as proposed by most solutions in prior art; this also makes data
collection to train classifiers a difficult task.

In this paper, we dealt with some of these problems and per-
formed what can be considered one of the most comprehensive
studies in image processing of such sensitive remote sensing
data. By doing an extensive study on a Brazilian Federal Po-
lice Cannabis drug apprehension set of records, we built what
is, as far as we know, the first public dataset of remote sens-
ing Cannabis and non-Cannabis crops images. From the dataset
acquisition, preparation, characterization, and classification, we
introduced novel contributions to this field, such as locating the
areas of interest, fixing acquisition errors, finding the best rep-
resentations to discriminate the crop of interest, among others.

Especially, our proposed data-driven approach to character-
ize these drug crops takes into account the complementary in-
formation from the near-infrared channel and false-color image
representations. These two representations, combined to better
discriminate the vegetation types, are used as input to an en-
semble of classifiers containing two specific CNNs, capable of
discriminating the chlorophyll information of these crops from
the rest of Earth materials. Although the near-infrared data is
part of the false color, we found CNNs with different architec-
tures trained on these two kinds of data, which can work in a
complementary way in a fusion (ensemble) scheme, which can
be robust against failures of individual classifiers. This ensemble
of CNNs using multiple architectures on multiple image repre-
sentations works as a powerful feature extractor, later combined
with an SVM classifier for decision making.

Our proposed method showed the highest mean f-measure,
the best accuracy, and one of the lowest false detections, being
a promising path toward the development of machine-learning
approaches focused on drug crops’ detection in remote sens-
ing images. Although the proposed ensemble had a small mean
improvement than that of the best individual classifier, it is de-
signed in such a way to correct individual classifier confusions.
So, it can be robust in real-world situations, where millions of
patches are used for classification and acquisition noise can hap-
pen. For the specific case of detecting Cannabis Sativa crops,
this research could also enable the collection of evidence from
satellite imagery even after a plantation ceases to exist, by means
of looking back at imagery history collected by different satel-
lites for specific places. This would open a whole new avenue
for prosecution and evidence gathering, as currently all we can
do is rely on police investigations and apprehensions on site.

Notwithstanding, the research in this front still has important
challenges to deal with in possible future work. First of all, other
automatic/semiautomatic image-selection methods could be ap-
plied to select the most discriminate patches inputs to be used
with tailored CNNs. Thus, segmentation or even different patch-
selection methods must be thought of to find out the best way to
include only positive or negative classes in the analyzed patches.
This is of special interest in this study, as some false positives
detected by our approach contain some Cannabis Sativa traces;
i.e., some Near2 patches containing camouflage and Cannabis
Sativa samples in the same patch were classified as contain-
ing drug crops, given our chosen requirement for truly tagging
a positive sample. Another interesting future work consists of
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studying the effect of other image representations as input to the
CNNs, as vegetation indices [75] have promising complemen-
tary information that could be used in a stacked fashion, with
other image representations in a single network, or even used
in an ensemble fashion with their own customized CNNs, as
proposed in this paper. Finally, other promising future work is
designing ad hoc CNNs for different representations of 30 × 30
blocks.
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