
Legally binding anonymous multiparty
commitments on a blockchain

Debasish Ray Chawdhuri
Research and Development

Talentica Software (I) Pvt. Ltd.
Pune, India

Abstract—In recent times, many blockchain solutions have
been proposed for automatic electronic contracts on a blockchain.
The most prominent example of it is Ethereum smart contracts.
In many cases, it is necessary to be able to sign contracts involving
things in the physical world that are not represented in the form
of crypto-assets. Such a contract can be legally enforced after
all the parties have signed them in case any party backs out
after signing the contract. We propose a solution to advertise
and sign anonymous multi-party contracts that are designed to
be acceptable and enforceable in a court of law once they are
signed.

To enable this, we also provide a designated deanonymizer
ring signature that allows some designated deanonymizers to be
able to break the anonymity of the signer and also allows them
to prove the true identity of the signer to any third party of their
choice.

Index Terms—Anonymous contracts, Designated
Deanonymizer Ring Signature, Blockchain

I. INTRODUCTION

Since the popularity and momentum of Bitcoin [1] sky-
rocketed, there has been much interest in other applications of
the underlying technology, now called a blockchain or more
generally a distributed ledger. Among them, smart-contracts
have come up as a groundbreaking idea. Instead of only
validating the result of the transfer of coins, the validators
are now responsible for validating the result of an arbitrary
computation. The concept of a smart-contract has been a
massive breakthrough since any agreements or arrangements
can now be executed on a blockchain platform. One direct
application was smart contracts to support custom tokens; for
example, ERC20 tokens [2] on Ethereum blockchain [3].

Smart contracts directly allowed multiple parties to trade
different assets on the blockchain automatically. However, the
automatic execution of contracts can only be done if the
assets being traded are somehow being represented on the
blockchain with some form of a smart-contract. Either these
assets are of purely cryptographic origin, for example, proofs
of work or tokens in a different blockchain, which can be
traded through a technique called atomic swap [4]; or these
assets are some cryptographic representation of some physical
assets, for example, fiat-backed cryptocurrencies. In the case
of the later, there must be some third-party arbiter to make
sure that the cryptographic representation correctly represents

a physical asset. This dependency on a central party cannot
be avoided since the existence and value of physical assets
cannot be ascertained cryptographically.

However, it may be worthwhile to try to minimize the
interaction with this arbiter and restrict our interaction to the
only times when there is a dispute. In the real world, such a
system exists in the form of the judiciary. The judiciary needs
to intervene only in case of a dispute. There are also forums
called alternative dispute resolution systems that can be used
for this purpose. Some of these systems can use a decentralized
mechanism for a conflict resolution with a majority vote
among several judges. Such systems are introduced in section
II.

The judiciary is dependent on the parties in conflict to
be able to prove their claims using some form of evidence.
In the case of trade, such evidence is usually some contract
documents signed by all the parties involved. Contracts can be
either signed physically or digitally. Once a contract is signed,
it can be enforced by the legal system.

However, when working with an online trading platform,
anonymity and privacy are of great importance. In the case
of a centralized web-based system, anonymity is maintained
by entrusting the central system not to disclose any private
data. On a blockchain system, however, preferably, there are no
privileged parties who can hide information from the system
while still using that information to facilitate the trade.

In our proposed solution, we provide a way to sign legally
enforceable contracts anonymously. Our solution ensures that
the following properties hold -
• Any authorized party with a verified public key must be

able to post an anonymous advertisement for the contract.
• Any party must be able to communicate with an adver-

tiser anonymously.
• The system must ensure that all signatures are done

only by validated users without being able to know the
identities of the parties involved.

• The system must ensure that the parties involved in a
contract know the identity of one another, while the
contract remains anonymous to anyone else.

• In case any of the parties break the contract after it has
been signed, any of the others involved must be able to
prove the identity of all of the signers in the court of law
or an alternative dispute resolution system.

43

2020 Crypto Valley Conference on Blockchain Technology (CVCBT)

978-1-7281-9390-8/20/$31.00 ©2020 IEEE
DOI 10.1109/CVCBT50464.2020.00009

Authorized licensed use limited to: Carleton University. Downloaded on August 01,2020 at 02:40:31 UTC from IEEE Xplore. Restrictions apply.

• Since the public keys used for signing contracts must be
mapped to some real parties in the physical world for the
signatures to be legally enforceable, and we assume some
authority for providing the mapping after doing validation
and paperwork. This can be performed by a traditional
certifying authority.

In the current system, we propose two different kinds of
contracts - a seller-buyer contract and a peer-to-peer contract.

In a seller-buyer contract, a seller wants to get paid in
cryptocurrency in exchange for some services or goods. Our
proposed system allows the seller to post an advertisement
anonymously and then sign a binding contract with any
interested party. Signing the contract discloses the identity of
the seller to the buyer while keeping the seller anonymous to
the rest of the world.

In the case of a peer-to-peer system, one party advertises
for a trade of two different physical assets. One example of
such an asset transaction can be a promise to pay interest in
exchange for a loan, or a promise to exchange the ownership
of bonds of different companies. Our proposed system allows
any verified user to create an advertisement that other verified
users can respond to and strike a deal. When the signature is
done, each party learns about the true identities of all the other
parties, but everyone remains anonymous to non-participating
parties.

It is well-known that in any multi-party communication
protocol, the party that is supposed to send the last message
can abandon the protocol while still having access to the
data communicated by everyone else. In our system, such
an abandonment would disclose the identities of the players
who have already signed, to the party that abandons the trade.
In such a case, our system proposes to resolve the problem
of parties abandoning the deal after some other parties have
already signed. It does so by locking cryptocurrency funds of
each party beforehand until he/she signs the contract.

II. RELATED WORK

The concept of a ring signature was first suggested in [5]. A
ring signature allows anonymity for the signer by allowing the
signer to hide his/her public key within a set of other public
keys of his/her choosing. A ring signature proves the fact that
one of the given set of public keys belongs to the real signer,
without giving out the identity of the signer. There is a fair
amount of research on ring signatures with different properties
and security definitions.

A verifiable ring signature [6]–[8] is a ring signature that
allows the signer to prove he/she indeed is the real signer to
a verifier if he/she wants to. An accountable ring signature
introduced in [9] allows a designated set of deanonymizers to
find out the real signer in the ring. However, it depends on the
user being in possession of a certified smart card that holds the
private key, which the user cannot have access to. It also does
not provide any way for the deanonymizer to prove the identity
of the real signer to anyone. [10] describes an accountable
signature scheme which provides the same functionality. The
signatured described in [10] has better assymptotic complexity,

but ours perform better for smaller rings. Also, in case there is
a need for the use of multiple deanonymisers, our construction
provides better performance for that.

There has been some work in the area of having legal
contracts on a blockchain. The Decentralized Arbitration and
Mediation Network [11] is a project to provide a framework
for arbitration using smart contracts. However, this is still a
work-in-progress.

A significant amount of work on alternative dispute resolu-
tion on smart contracts has been done by the Juris team [12].
Juris defines a structure for legal contracts on a blockchain,
and an elaborate process for dispute resolution. Juris allows
the creation of smart contracts that fix the terms of a dispute
resolution. Once a party asks for arbitration, that party can
trigger the arbitration process. This immediately stops all
further execution of the contract and freezes all funds in
a special locked account. The Juris dispute resolution can
happen in the following three manner -

1) Self mediation: This allows parties to resolve disputes
using the contract to either proceed in the previously
agreed-upon terms with mutual consent among all the
involved parties or proceed with different terms agreed
upon by the involved parties.

2) SNAP Judgement: If self mediation does not work, any
party can escalate it to the Simple Neutral Arbitrator
Poll or SNAP judgment. This process costs some inbuilt
cryptocurrency called JRS. Some JRS is attached to a
contract for this purpose when it is created. Some more
can be attached by the parties. The JRS is paid to the
Jurists who would be responsible for deciding the judg-
ment. The jurists vote in an anonymous, decentralized
poll. All the parties can see the result of the poll, i.e.,
the number of votes in favor of each possible outcome.
They may choose to agree to a resolution suggested by
the jurists.

3) Binding PANEL Judgment: If none of the above
mechanisms work, the case would be escalated to the
Peremptory Agreement for Neutral Expert Litigation or
PANEL. This is a mechanism similar to the SNAP
judgment in that it is made by a panel of Jurists.
However, this judgment is binding on the parties, and
the jurists are not anonymous. A presiding High Jurist
would then be able to execute the decision and mark the
dispute as closed.

The Juris system also has a mechanism to keep track of the
reputation of every Jurist along with their area of expertise.
The reputation is computed based on data both on blockchain
and outside of the blockchain, like certification.

Kleros [13] defines a decentralized dispute resolution frame-
work that is incentive-driven and works for cases where all
the evidence can be evaluated electronically. Kleros allows
smart contracts to make themselves arbitrable. Arbitrable
contracts have the option to choose the courts under whose
jurisdiction they would operate. Both the courts and the jurors
are categorized per specialization in a tree structure. Jurors are
compensated using cryptocurrency that the parties need to pay.

44

Authorized licensed use limited to: Carleton University. Downloaded on August 01,2020 at 02:40:31 UTC from IEEE Xplore. Restrictions apply.

One difference between Kleros and Juris is that Kleros allows
an unlimited number of appeals with the condition that the
number of jurors is doubled in each appeal. This increases the
cost proportionally. However, the option of multiple appeals
curbs the incentive to bribe the jurors. Our work is, in some
sense, complementary to Juris and Kleros.

There has been very little research on privacy-preserving
contracts on a blockchain. A system called Hawk [14], privacy
is achieved by having a trusted party computing and certifying
the result of the computation dependent on private data. Such
a system creates a dependency on the honesty of the central
party. Lelantos [15] is a system that uses blockchain and onion
routing to deliver packages anonymously.

III. OUR CONTRIBUTION

We make the following contributions -
• We propose an optimization of the zero-knowledge proof

of linear member tuple [16].
• We propose a different construction for a designated

deanonymizer ring signature that allows the anonymity
of the signer while allowing the deanonymizers of the
signature to be able to know the true identity of the signer.
The deanonymizers are also able to demonstrate the true
identity of the signer to anyone.

• We propose a blockchain smart contract-based system to
allow the signing of a contract anonymously by multiple
parties. Such contracts can then be enforced by systems
similar to [12] and [13] or a court in case of a dispute.

IV. NOTATIONS

We use the following notations and conventions.
• We use i ∈ {1..m} as the index of a component of a

tuple, and j ∈ {1..n} to index a tuple in a set. In the
case of the designated deanonymizer ring signature, i is
used as the index of a deanonymizer, and j is used as the
index of a signer in the ring.

• The counting variables are written as the superscript,
and the bound ones are written as a subscript to avoid
confusion. If j is written as a superscript, that means its
a sequence with an element for each value for j. For
example, Xj = ajY j means for each j, Xj = ajYj
and X = {ajY j}, means X = {a1Y1, a2Y2, ...} for
all values of j. If we use parentheses instead of curly
braces, it means an ordered set. So, X = (ajY j), means
X = (a1Y1, a2Y2, ...). On the other hand, in the case of
X = sAj , the j refers to either a fixed value or a value
known from the context. For example, ∀j, Aj = sjBj is
the same as Aj = sjBj . Some conditional expressions
are also used. The expression Aj 6=k = sjBj represents
∀j ∈ {1..n} \ {k}, Aj = sjBj . Notice that the condition
is used on only one of the occurances of j for brevity.

• G is a DDH elliptic curve group of prime order q. G is a
system-wide fixed generator of G. Fq is the field integer
modulo q. F∗q is Fq \ {0}. Hq is a hash function with
output in F∗q .

• If X is a set, then x ← X denotes a random sample x
being picked from a uniform distribution over X . If X is
a probabilistic polynomial-time algorithm or PPTA, then
x← X represents that x is the output of one run of the
algorithm X .

• A function f : N → R is negligible if ∀α ∈ N[∃x0 ∈
N[∀x ∈ N[x > x0 ⇒ |f(x)| < 1

xα]]]. For our system, we
use the security parameter λ which represents the number
of bits required to represent the order q of the group
G. We say f(λ) ≈ φ(λ) if the function f(λ) − φ(λ) is
negligible in λ. We assume that q is the function of the
parameter λ and 1/q(λ) ≈ 0.

V. DESIGNATED DEANONYMIZER RING SIGNATURE

We propose a designated deanonymizer ring signature to fa-
cilitate our trade of commitments. A designated ring signature
allows a set of designated public keys such that the owners
of the corresponding private keys can deanonymize the signer.
In addition, a designated deanonymizer ring signature gives
the deanonymizers the ability to prove the identity of the real
signer to everyone.

A designated deanonymizer ring signature is a multi-party
protocol - a signer, a set of deanonymizers, a verifier, and an
authority.
• The signer must have permanent key-pair verified by the

system.
• The deanonymizer key-pairs are ephemeral and can be

used for exactly one signature. We support multiple
deanonymizers in our signature.

• The signer is the party making a commitment to the
deanonymizer.

• Since it is a ring signature, the signer hides his/her
permanent public key in a random collection of other
decoy public keys.

• However, a designated deanonymizer can discover the
true identity of the signer using his/her ephemeral public
key.

• A deanonymizer can prove the identity of the true signer
to an authority or a judge using an interactive protocol.

• A verifier does not need a key-pair, which means anyone
can verify a signature.

• A verifier checks that the deanonymizer can know and
prove the identity of the true signer to any authority
during verification. An authority does not need a key-
pair.

The following describes a designated deanonymizer ring
signature formally.
• Key Generation: The jth signer generates a permanent

key-pair (sksj , pksj) ← Gen(). The ith deanonymizer
generate his/her own key-pair (skdi, pkdi)← Gen().

• Signing: For a message M , a set of public keys of
possible signers {pkjs}, k being the index of the public
key of the current signer, secret key sks for the public key
{pksk} , deanonymizer keys {pkid}, the signer generates
a signature Π← Signsks(M, (pkjs), (pk

i
d))

45

Authorized licensed use limited to: Carleton University. Downloaded on August 01,2020 at 02:40:31 UTC from IEEE Xplore. Restrictions apply.

• Verification: For a message M , a set of public keys
of possible signers {pkjs}, deanonymizer keys {pkid},
and the signature Π, the verifier checks the validity
using validity ← V erify(Π,M, (pkjs), (pk

i
d)), where

validity ∈ {0, 1}.
• Deanonymization: For a message M , a set of public

keys of possible signers {pkjs}, k the index of the public
key of the current signer, secret key sks for the public
key pksk , deanonymizer keys {pkid},,the signature Π,
and the private key skdl for the lth deanonymizer, the
deanonymzer can compute the public key of the true
signer using pksk = Deanonymizeskdl(Π,M, (pkjs)).

• Demonstration of the signer by the deanonymizer:
For a message M , a set of public keys of possible
signers {pkjs}, k the index of the public key of the
current signer, secret key sks for the public key
pksk, deanonymizer keys {pkid}, the signature Π, and
the private key skdl for the lth deanonymizer, the
deanonymzer can execute an zero-knowledge interactive
proof protocol to any authority to demonastrate the
identity of the correct identity of a signer to any
authority. The protocol between the prover P and the
authority A would be represented as (T, pksk, s) =
Demonstrate(P(skdl),V,Π,M, (pkjs), (pk

i
d), pkdl),

where T is the transcript of the proof pksk is the true
signer, and s is the result of the verification. s = 1 if the
verification succeeds and s = 0 otherwise.

The following are the properties of a designated deanonymizer
ring signature -
• Completeness: The completeness property states that if

the signature is correctly created by a owner of one of
the private keys, the public keys of which are listed in
the ring of signers, then the verification is guranteed to
be successful.

Pr

v = 1

∣∣∣∣∣∣∣∣∣∣
(skid, pk

i
d)← Gen();

(skjs, pk
j
s)← Gen();

k ← {1..n};
Π← Signsksk(M, (pkjs), (pk

i
d));

v ← V erify(Π,M, (pkjs), (pk
i
d));

 = 1

• Existential unforgeability: Existential unforgeability
guarantees that an adversary cannot produce a signature
without a private key when provided with a signing
oracle, with the condition that it is not allowed to query
for the input for which it outputs a signature. For any
PPTA adversary A, and an oracle O that returns a valid
signature for any M ′, (pkjs), (pk

i
d). Let θ be the set of all

the queries made by A to O.

Pr

 v = 1∧
τ /∈ θ

∣∣∣∣∣∣∣∣
(skjs, pk

j
s)← Gen();

(M,Π, (pkid))← AOθ ((pkjs));
τ := (M, (pkjs), (pk

i
d));

v ← V erify(Π,M, (pkjs), (pk
i
d));

 ≈ 0

• Anonymity: The anonymity property guarantees that a
PPTA adversary cannot find out the real signer in the

ring signature even when provided with a signing oracle.

Pr

b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(skid, (pk
i
d))← Gen();

(skjs, (pk
j
s))← Gen();

k1 ← {1..n};
k2 ← {1..n} \ {k1};
b← {1, 2}
k := kb;
Π← Signsksk(M, (pkjs), (pk

i
d));

b′ ← AO(Π, k1, k2,M, (pkjs),
(pkid));

≈ 1

2

• Nonrepudiation: The nonrepudiation property states that
an adversary cannot create a signature that is valid for
either two different messages or different signer rings or
deanonymizer rings or both. The adversary is allowed to
create all the public keys of its choice, thus allowing it
to know all the private keys. This property guarantees
that a signer cannot later claim that the signature was for
a different message. In the following, i′ ∈ {1..m′} and
j′ ∈ {1..n′} where (m′, n′) are possibly different from
(m,n).

Pr

v = 1∧
v′ = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(M,M ′,Π, (pkid), (pk
′i′
d),

(pkjs), (pk
′j′
s))← A;

v ← V erify(Π,M, (pkjs),
(pkid));
v′ ← V erify(Π,M ′,

(pk′
j′

s), (pk′
i′

d));

≈ 0

• Designated deanonymization (sanity): This property
guarantees that it is not possible for a PPTA to create
a signature such that it deanonymizes to a public key
outside of the list of public keys in the ring of signers.
The adversary is allowed to create all keys other than the
key-pair of that particular deanonymizer.

Pr

v = 1∧
pk /∈ {pkjs}∧
τ /∈ θ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l← {1..m};
(skdl, pkdl)← Gen();

(M,Π, (pkjs), (pk
i6=l
d))

← AOθ (skdl);
τ := (M, (pkjs), (pk

i
d))

v ← V erify
(Π,M, (pkjs), (pk

i
d));

pk ← Deanonymizeskdl
(Π,M, (pkjs));

≈ 0

• Designated deanonymization (unforgeability): The un-
forgeability property of the designated deanonymization
guarantees that even when an adversary knows all the
private keys of the signer ring except one, it cannot make
it look to the deanonymizer like the one signer that it does

46

Authorized licensed use limited to: Carleton University. Downloaded on August 01,2020 at 02:40:31 UTC from IEEE Xplore. Restrictions apply.

not have the private key of, actually was the real signer.

Pr

v = 1∧
pk = pksk∧
τ /∈ θ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l← {1..m};
k ← {1..n};
(skdl, pkdl)← Gen();
(sksk, pksk)← Gen();

(M,Π, (pkj 6=ks), (pki6=ld))
← AOθ (skdl);
τ := (M, (pkjs), (pk

i
d))

v ← V erify
(Π,M, (pkjs), (pk

i
d));

pk ← Deanonymizeskdl
(Π,M, (pkjs));

≈ 0

• Completeness of the demonstration of the signer by
the deanonymizer: The completeness of the demon-
stration means that an honest deanonymizer can prove
the result of the deanonymization to an honest verifier.

Pr

(v = 1∧
τ /∈ θ)⇒
(s = 1∧
pk = pksk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l← {1..m};
(skdl, pkdl)← Gen();

(M,Π, (pkjs), (pk
i6=l
d))

← AOθ (skdl);
τ := (M, (pkjs), (pk

i
d))

v ← V erify
(Π,M, (pkjs), (pk

i
d));

pk ← Deanonymizeskdl
(Π,M, (pkjs));
(T, pksk, s)←
Demonstrate(P(skdl),V,
Π,M, (pkjs), (pk

i
d), pkdl);

≈ 1

• Soundness of the demonstration of the signer by
the deanonymizer: The soundness property of the
demonstration protocol proves that it is not possible for a
dishonest PPTA A to create a signature collaborating with
a different PPTA A2 to demonstrate a different signer
to the authority than what the Deanonymize function
would return for the same signature.

Pr

(v = 1∧
τ /∈ θ)⇒
(s = 1∧
pk 6= pksk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l← {1..m};
(skdl, pkdl)← Gen();

(M,Π, (pkjs), (pk
i6=l
d), x)

← AOθ (skdl);
τ := (M, (pkjs), (pk

i
d))

v ← V erify
(Π,M, (pkjs), (pk

i
d));

pk ← Deanonymizeskdl
(Π,M, (pkjs));
(T, pksk, s)←
Demonstrate(A2(x, skdl),
V,Π,M, (pkjs), (pk

i
d), pkdl);

≈ 0

• Zero-knowledge property of the demonstration of the
signer by the deanonymizer: The zero-knowledge
property of the demonstration shows that that for any
PPTA V∗ acting as a verifier (possibly malicious), the
transcript of the demonstration protocol does not provide

any information to any PPTA adversary that is also given
access to V∗.

Pr

b = b′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(skid, pk
i
d)← Gen();

(skjs, pk
j
s)← Gen();

k ← {1..n};
Π← Signsksk(M, (pkjs), (pk

i
d));

(T1, pksk, s)←
Demonstrate(P(skdl),
V∗,Π,M, (pkjs), (pk

i
d), pkdl);

T2 = S(V∗,
Π,M, (pkjs), (pk

i
d));

b← {1, 2};
b′ = A(V∗,
Π,M, (pkjs), (pk

i
d), Tb);

≈ 1

2

VI. BLOCKCHAIN MODEL

We assume a blockchain with a UTXO model. The UTXOs
in our system supports some level of scripting like Bitcoin [1].
We assume the existence of UTXOs with an internal state. The
states can be set or altered through smart contract calls. We
assume the functionality of being able to call methods on a
UTXO that do not cause the use of the UTXO but instead,
change its internal state based on the custom logic written in
it. This is not very different from Ethereum smart contract,
except that in the case of UTXO, either the entire amount is
spent or nothing is spent.

To spend the UTXO, one must call the
spend(spender, signature,DDRSig) method with
appropriate arguments. If the method returns true, the
transaction is valid; otherwise, it is invalid. We also
assume that calling methods on spent transaction outputs or
non-existent transaction outputs have no effect.

We assume the existence of two system-defined methods
to be usable in the conditional payment code. The method
verifySchnorr(signer, signature) verifies a Schorr signa-
ture [17] signature of the transaction body against a public
key signer. The method verifyDDRSig(message,
DDRSig, peerList) verifies a designated deanonymizer ring
signature DDRSig for the message message, and it also
verifies that the owner of every public key in the list peerList
can both discover the permanent key of the actual signer and
the fact that each of them can prove the identity of the signer
to an authority. For this purpose, the function also checks that
every signer public key used for the ring signature has been
KYC validated.

The protocol requires some broadcast of messages. Since
blockchain systems also depend on peer-to-peer broadcasting
of transactions, the same mechanism can be used to broadcast
encrypted messages that can be decrypted only by the intended
parties. We use the Diffie-Hellman key exchange to establish
symmetric key channels between parties over this broadcasting
mechanism.

VII. MULTI-PARTY COMMITMENTS

A multi-party commitment in our system is potentially a
legally binding agreement among multiple participants. We

47

Authorized licensed use limited to: Carleton University. Downloaded on August 01,2020 at 02:40:31 UTC from IEEE Xplore. Restrictions apply.

propose two different kinds of multi-party transactions -

• Seller-buyer commitment
• Peer-to-peer multiparty commitment

A. Seller-buyer commitment

A seller-buyer commitment is a more straightforward case
where the seller advertises it’s products. The seller wants to get
paid in cryptocurrency in exchange for something written in a
legal contract, which is not a smart contract, but preferably
structured. Although the seller does advertise publicly, the
seller does not want to disclose when a sale has happened.
The following describes the protocol.

Smart Contract 1: Conditional payment for seller-
buyer commitment

Globals: timestamp, creator, committer, contract
function init(cr, com,contr) :

timestamp = currentTimestamp();
creator = cr; committer = com; contract = contr;

end
function spend(spender,signature,DDRSig) :

if spender == creator then
if currentTimestamp() > timestamp+∆T ∧

verifySchnorr(creator, signature) then
return true;

else
return false;

end
else if spender==committer then

if verifySchnorr(committer, signature) then
if verifyDDRSig(contract, DDRSig,
{creator}) then

return true;
else

return false;
end

else
return false;

end
end

1) The seller generates a random secret key s← F∗q .
2) The seller computes an ephemeral public key S = sG.
3) The seller broadcasts an advertisement (M,S), where

M is the body of the contract.
4) An interested buyer, generates an ephemeral key-pair

p ← F∗q , P = pG and broadcasts (M,S, P) as an
interest to this offer.

5) At this point, a Diffie-Hellman key exchange has been
achieved as both sides can compute sP = pS, estab-
lishing a private communication channel between the
seller and the buyer, which they can use to communicate
further. These channels can be used to negotiate over the
contract and decide on a final contract M ′ which may
or may not be the same as M .

6) When both sides are satisfied with a possibly modified
contract M ′ and a price c, the buyer creates a condi-
tional payment as shown in smart contract 1 using call
init(P, S,M ′).

7) The seller checks that the conditional payment is cor-
rectly created and then spends the UTXO immediately
within ∆T time using a correct demonstrable signature.
Notice that the seller must sign the UTXO using the
ephemeral key S, but also must provide the DDRSig
using his/her permanent key Q hidden within a random
list of other permanent public keys.

8) In case the seller does not spend the UTXO, the buyer
can get his/her money back after the time limit has
expired.

The above protocol makes sure of the following properties.
• If the buyer does not correctly lock his/her funds, the

seller does not provide the commitment.
• If the seller does not claim the funds by disclosing the

correct demonstrable signature, the buyer can reclaim the
funds after ∆T time, thus canceling the trade.

B. Peer-to-peer multiparty commitment

In this case, the nature of the commitment is peer-to-peer.
The participants can either negotiate offline or respond to an
anonymous advertisement. In the following, we describe the
case of an anonymous advertisement. The offline negotiation
would only take a subset of the steps.

We would like to highlight the problem of information
asymmetry in signing such peer-to-peer contracts. Even though
the contract is not valid until everyone signs it, the act of
signing discloses the identity of the signer to the rest of the
participants. This allows other participants to abandon the
contract once they come to know of the identity of the people
who already signed. To resolve this problem, we propose the
use of locked cryptocurrency funds with conditional payments.
The person who refuses abandons the contract would lose all
the locked funds. The way to unlock the funds is to disclose the
appropriate demonstrable signature. The following describes
the protocol.

1) The advertiser generates a random key p1 ← F∗q .
2) The advertiser computes an ephemeral public key P1 =

p1G.
3) The advertiser broadcasts an advertisement (M,P1),

where M is the body of the contract.
4) ith interested peer generates an ephemeral key-pair pi ←

F∗q , Pi = piG and broadcasts (M,Pi) as an interest to
this offer.

5) Once the interests are shared, peer-to-peer Diffie-
Hellman channels open up using the key piPl = plPi
between the ith and the lth peer.

6) The peers then can negotiate a modified contract M ′

and also decide on the order of signing the contract.
The peers also decide on the transaction amount to be
locked for each participant. Let i be the index in the
order of signing, and there is a total of m participants.

48

Authorized licensed use limited to: Carleton University. Downloaded on August 01,2020 at 02:40:31 UTC from IEEE Xplore. Restrictions apply.

Smart Contract 2: Conditional payment for multi-
party commitment

Globals: timestamp, creator, contract, prev, state,
nextContract, peerList

function init(cr,contr,pr, next, pl) :
timestamp=currentTimestamp();
creator = cr; contract = contr; prev = pr; state =
prelock; nextContract = next; peerList = pl;

end
function lock(signer, signature, DDRSig) :

if signer == prev ∧ verifySchnorr(prev, signature)
∧ verifyDDRSig(contract++prev, DDRSig,
peerList) then

state = locked;
end

end
function spend(spender,signature,DDRSig) :

if spender==creator ∧ verifySchnorr(creator,
signature) then

if state == prelock then
if currentTimestamp() > timestamp+∆T
then

return true;
else

return false;
end

else if state==locked then
if verifyDDRSig(contract++creator,
DDRSig, peerList) then

if nextContract6=NULL then
nextContract.lock(creator, signature,
DDRSig);

end
return true;

else
return false;

end
else

return false;
end

else
return false;

end
end

7) The peers must lock their funds in a pre-lock position
in the reverse order of signing with the init function
in smart contract 2. The last peer locks his/her fund by
creation of an UTXO with the agreed-upon amount by
calling init(Pm,M

′, Pm−1, NULL, {P i}). The other
peers except the first peer then lock their own funds
using init(Pi,M

′, Pi−1, next contract, {P i}) where
next contract is the pointer to the conditional UTXO
created by the (i + 1)th peer. A peer must verify the
(i + 1)th peer’s contract to be following the protocol
before locking his/her funds.

8) Now, the first peer verifies all the contracts
are created correctly. Then he/she calls
contract2.lock(P1, Sig1, DSig1), where Sig1 is
his signature on the transaction, and DSig1 is the
appropriate designated deanonymizer ring signature.
This locks the funds of P2 forever until P2 discloses
his/her designated deanonymizer ring signature.

9) Every other peer with index i then unlocks and spends
his/her own funds in sequence using the appropri-
ate designated deanonymizer ring signature DSigi and
signature Sigi using contracti.spend(Pi, Sigi, DSigi).
The designated deanonymizer ring signature needs to be
done on the message M ′ + +Pi, where ++ means the
concatenation of the bits. Notice that other than the last
signer, every signer locks the funds of the next signer
permanently by using his/her funds.

The above procedure makes sure of the following properties -
• If any of the peers refuses to lock his/her funds in the

appropriate amount, everyone can abandon the contract,
and no identity is disclosed in the process. Every peer
who locked his/her fund can recover the same using the
spend function after ∆T time.

• After the first peer discloses the designated deanonymizer
ring signature revealing his/her identity to the other peers,
any player that abandons the process would lose all
his/her funds permanently while others would be able to
recover their funds. The ones who did sign before that
would get their funds immediately after signing, the ones
who did not sign yet can recover their funds after ∆T
time.

VIII. ZERO-KNOWLEDGE PROOF OF LINEAR MEMBER
TUPLE

The Zero-knowledge Proof of Linear Member Tuple is a
generalization of the Cryptonote signature. We use this many
times in our protocol. All our constructions requie an elliptic
curve for which the DDH problem is assumed to be hard. The
following describes the protocol.

Definition 1. Linear Tuple: We describe a linear t-tuple
as an ordered set of t pairs of elliptic curve points X =
((X1, Y1), (X2, Y2), (X3, Y3), ..., (Xt, Yt)) such that ∃w[∀i ∈
{1...t}[Yi = wXi]]. We use i as the index of the vector in a
tuple of vectors.

A. Zero-knowledge Proof of Linear Member Tuple
Given a set of t-tuples S = {X1,X2,X3, ...,Xk} of

pairs of curve points, it may be the case that one of the
member t-tuples is a linear tuple. We assume this t-tuple
is X = ((X1, Y1), (X2, Y2), (X3, Y3), ..., (Xt, Yt)) where
∃w[∀i ∈ {1...t}[Yi = wXi]]. We assume that the index of X
in S is k . We describe a protocol so that a party with access
to the proportinality constant w can provide a non-interactive
zero-knowledge proof that one of the member t-tuple in the
given set of t-tuples is a linear tuple. A bit-string called a
token or a message m ∈ 1∗ is included in the proof to be able
to use it as a signature.

49

Authorized licensed use limited to: Carleton University. Downloaded on August 01,2020 at 02:40:31 UTC from IEEE Xplore. Restrictions apply.

The proof involves probabilistic polynomial-time algorithms
- a prover P and a verifier V.

1) Construction of ZkPLMT:
• Prover P(m,S, k, w) : The prover works in the follow-

ing manner.
– Choose r ← F∗q
– ∀j 6= k, choose cj , dj ← F∗q
– Compute h2 = 1,
hi = Hq(hi−1,S)∀3 ≤ i ≤ t

– Compute
Aj = X1j ,
Bj = Y1j ,
Cj =

∑t
i=2 hiXij ,

Dj =
∑t
i=2 hiYij

– ∀j 6= k, set Ej = cjAj + djBj ,
Fj = cjCj + djDj

– Set Ek = rAk, Fk = rCk

– Compute h = Hq(m,S, (E
j , F j))

– Set dk = h−
∑
j 6=k dj

– Set ck = r − dkw
– Output π = ((cj , dj))

When a random index k is implied, we denote the call to
the prover by P(m,S,X, w) where X is the linear tuple
at the index k.

• Verifier V(π,m,S) : Given the token m and the proof
π, the verifier does the following.

– Compute h2 = 1,
hi = Hq(hi−1,S)∀3 ≤ i ≤ t

– Compute
Aj = X1j ,
Bj = Y1j ,
Cj =

∑t
i=2 hiXij ,

Dj =
∑t
i=2 hiYij

– set Ej = cjAj + djBj ,
F j = cjCj + djDj

– Compute h = Hq(m,S, (E
j , F j))

– Check h ?
=
∑
j dj . If the check works, return 1, else

return 0

2) Properties of ZkPLMT: We now consider the properties
of the ZkPLMT protocol. These properties are adapted from
[18], [19]. All of these properties are proved under the DDH-
hardness assumption. The proofs of the theorems are provided
in the Appendix section.

Theorem 1. Completeness: Given a set of t-tuples
S = {X1,X2,X3, ...,Xn} of pairs of curve
points, containing a member t-tuple X =
((X1, Y1), (X2, Y2), (X3, Y3), ..., (Xt, Yt)) such that
∃w[∀i ∈ {1...t}[Yi = wXi]], if prover P generates π
in the prescribed manner, then V(π,m,S) = 1, where V is
the verifier working in the prescribed manner.

Theorem 2. Soundness: Given an oracle OP that provides
a valid proof π′ given any message m′ and any set of tuples
S′ containing a linear member tuple, for any probabilistic

polynomial time algorithm P′,
Pr[(π,m,S′) ← P′OPθ ();V(π,m,S′) = 1] is negligible if
S′ contains no linear member tuple, where θ is the set of all
queries to OP .

Theorem 3. Proof of knowledge: If there exists a PPTA P′

such that given an oracle OP that provides a valid proof π′

given any message m′ and any set of tuples S′ containing a
linear member tuple, and Pr[V(π,m,S) = 1 ∧ (m,S, π) /∈
θ|(m,S, π)← P′OPθ ();] = δ, where θ is the set of all queries
to OP , and P ′ calls the random oracle Q times; then there
exists an extractor E such that Pr[w = w′|w′ ← E(P′);] ≥
1
Qδ(δ − 1/q) where S and w are as defined in theorem 1.

Theorem 4. Mixing: Under the DDH assumption, for any
probabilistic polynomial time algorithm A, Pr[k = k′|π ←
P(m,S, k, w); k′ ← A(m,S, π)]−1/||S|| is negligible where
S and w are as defined in theorem 1 and k is the index of
linear tuple in S.

Theorem 5. Non-interactive Zero-knowledge [20]: We
rewrite P(m,S, k, w) = P′

OH (m,S, k, w), where OH is the
random oracle. There exists a simulator S, such that for
any (m,S, k, w), Pr[b′ = b|(π1,OS) ← S(m,S);π2 ←
P′
OS (m,S, k, w); b← {1, 2}; b′ ← AOS (m,S, πb)] = 1

2 .

Theorem 6. Token Stickiness: For any probabilistic polyno-
mial time algorithm P′, Pr[(π,S′,S′′,m′,m′′) ← P′;m′ 6=
m′′ ∧V(π,m′,S′) = 1 ∧V(π,m′′,S′′) = 1] is negligible.

Our version of the protocol is faster than the original version
in [16] because it is faster to compute the sum of scalar
products of curve points than to individually compute the
scalar products and then to sum them as mentioned in [21].

IX. CONSTRUCTION OF THE DESIGNATED DEANONYMIZER
RING SIGNATURE

The signature has four roles involved - a signer, several
deanonymizers, a verifier, and an authority.

A. Key Generation:

The keys used are all elliptic curve Schnorr signature keys.
For a system-wide fixed generator G, the private key is a
randomly generated scalar x ← Fq and the public key is
X = xG.

B. Signing

The signer creates a signature to make a commitment
towards the deanonymizer. For the message M , signer private
key q, the signer public key Q = qG, the deanonymizer public
keys (P i), the signer creates the signature as follows.
• The signer chooses public keys {Q1, Q2, ..., Qm} from

the system containing Q. We assume that the index of Q
in this array is k, i.e. Q = Qk.

• The signer computes Ri = qP i.
• The signer computes the linear tuple X =

((G,Q), (P i, Ri)).
• The signer computes non-linear tuples Yj =

((G,Qj), (P i, Ri)) for all j 6= k. Assign Yk = X.

50

Authorized licensed use limited to: Carleton University. Downloaded on August 01,2020 at 02:40:31 UTC from IEEE Xplore. Restrictions apply.

• The signer computes the proof π = P(M,Yj, k, q)
• The signer shares the signature (π,M,Ri, P i, Qj)

C. Verification

The verifier verifies the signature in the following manner.
• The verifier computes Yj = ((G,Qj), (P i, Ri))
• The verifier returns the result of the verification

V(π,M, (Yj))

D. Deanonymization

The lth deanonymizer can discover the true signer by simply
computing Q = p−1l (plQ) = p−1l (plqG) = p−1l (qPl) =
p−1l Rl where pl is the private key of the lth deanonymizer
and P = Pl = plG is his public key.

E. demonstration of the signer by the deanonymizer

A deanonymizer can prove the true identity to any authority
(identity verifier) using generalized zero-knowledge proof of
linear dependence described in [16], which is a generalization
of Chaum’s undeniable signature [22] to multiple linear tuples.
• The deanonymizer sends the signature

(π,M,Ri, P i, Qj), his own public key P and Q
to the authority. First, the authority checks that P is one
of the deanonymizer public keys in the signature. The
authority runs the verification algorithm on the signature
to check if it is valid.

• The authority chooses a random scalars t, u← Fq ,
• The authority computes C = tG + uQ and shares it to

the deanonymizer.
• The deanonymizer computes D = pC and shares h =
Hq(D) to the authority.

• The authority shares t, u to the deanonymizer.
• The deanonymizer checks if C ?

= tG+ uQ. If the check
succeeds, the verifier discloses D to the authority.

• The authority checks if h ?
= Hq(D) and D ?

= tP+uR. If
both the check succeeds, the authority accepts the proof,
otherwise rejects it.

Theorem 7. The designated deanonymizer ring signature is
complete.

Theorem 8. The designated deanonymizer signature is exis-
tentially unforgeable.

Theorem 9. The designated deanonymizer signature is anony-
mous

Theorem 10. The designated deanonymizer ring signature has
nonrepudiation property.

Theorem 11. The designated deanonymization algorithm of
the signer in the designated deanonymizer ring signature both
sane and unforgeable.

Theorem 12. The demonstration of the signer algorithm for
the designated deanonymizer ring signature is complete.

Theorem 13. The demonstration of the signer algorithm for
the designated deanonymizer ring signature is sound.

Theorem 14. The demonstration of the signer algorithm for
the designated deanonymizer ring signature is a black box
computational zero-knowledge.

X. COMPARISON AGAINST EARLIER CONSTRUCTION OF
DESIGNATED DEANONYMIZER RING SIGNATURE

For a ring size of N , and only one deanonymizer, our
signature consists of 2N field elements and 1 group element.
For every additional deanonymizer, the signature requires
one additional group element. In case of [10], the signature
requires log2N+12 group elements and 1

2 (3log2N+12) field
elements. We can reasonably assume that the group elements
have the same size as the field elements. In such a case, our
construction has a size of 2N + 1, and the 5

2 log2N + 18. In
the case of smaller ring sizes up to 13, our construction has
a smaller size. Larger ring size does increase the size of the
transaction proportionally as all the public keys do need to be
included in the transaction. This limits the ring size in practice.
For example, Monero has a fixed ring size of 11. Under this
condition, our construction is a little bit smaller in size. Our
construction needs only one extra group element per additional
deanonymizer.

The verification of our construction requires 4N group
exponentiations and 2 additional exponentiations per addi-
tional deanonymizer. In the construction in [10], it takes
N + 2mn+ 2m+ 15 group exponentiations where N = nm.
Assuming n = 2, our construction performs about better up
to a ring size of 10. The proving requires the same number of
groups exponentiation as verification in our construction. In
case of [10], the proving time is mN + 3mn+ 2m+ 12. The
proving time is always better in our construction.

Therefore, it would be advisable to use our construction for
smaller ring sizes, and the construction in [10] for larger ring
sizes.

XI. SUMMARY

In this paper, we tackle the problem of trading on the
blockchain that involves physical assets. The trade is simply a
commitment to conduct the actual trade in due time. However,
the commitment can be proven in the court of law if any of
the parties back off. However, we also provide a solution to
keep every trade anonymous for everyone else.

We provide a new construction of a designated
deanonymizer ring signature to facilitate signing contracts in
a way so that only the deanonymizer can know the signer’s
identity, and everyone can verify that the deanonymizer can
indeed know the signer’s identity and prove it to someone if
the need be.

In most of the contracts, the parties involved would stick to
their promise, and hence, there is no need to involve the court.
In this case, every party remains anonymous to everyone not
involved in the contracts. On the other hand, if any of the
parties refuse to fulfill his/her promise, any other member can
take him/her to court.

51

Authorized licensed use limited to: Carleton University. Downloaded on August 01,2020 at 02:40:31 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf.”

[2] “Eip 20: Erc-20 token standard, https://eips.ethereum.org/eips/eip-20,”
2015.

[3] D. Wood, “Ethereum: a secure decentralised generalised transaction
ledger,” 2014.

[4] M. Herlihy, “Atomic cross-chain swaps,” CoRR, vol. abs/1801.09515,
2018. [Online]. Available: http://arxiv.org/abs/1801.09515

[5] R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,” in
Advances in Cryptology — ASIACRYPT 2001, C. Boyd, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 552–565.

[6] J. Lv and X. Wang, “Verifiable ring signature,” 2003.
[7] C.-H. Wang and C.-Y. Liu, “A new ring signature scheme with signer-

admission property,” Inf. Sci., vol. 177, pp. 747–754, 2007.
[8] Z. Changlun, L. Yun, and H. Dequan, “A new verifiable ring signature

scheme based on nyberg-rueppel scheme,” in 2006 8th international
Conference on Signal Processing, vol. 4, 2006.

[9] S. Xu and M. Yung, “Accountable ring signatures: A smart card
approach,” in CARDIS, 2004.

[10] J. Bootle, A. Cerulli, P. Chaidos, E. Ghadafi, J. Groth, and C. Petit,
“Short accountable ring signatures based on ddh,” IACR Cryptology
ePrint Archive, vol. 2015, p. 643, 2015.

[11] “Decentralized arbitration and mediation net-
work (damn), https://github.com/thirdkey-
solutions/damn/blob/master/proposal.asciidoc.”

[12] “Juris, https://drive.google.com/file/d/1318klgeyl4g02vudl-c-
bcnvpkujtnbf/view,” 2018.

[13] W. G. Clement Lesaege and F. Ast.
[14] A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:

The blockchain model of cryptography and privacy-preserving smart
contracts,” 2016 IEEE Symposium on Security and Privacy (SP), pp.
839–858, 2015.

[15] R. AlTawy, M. ElSheikh, A. M. Youssef, and G. Gong, “Lelantos:
A blockchain-based anonymous physical delivery system,” 2017 15th
Annual Conference on Privacy, Security and Trust (PST), pp. 15–1509,
2017.

[16] D. Ray Chawdhuri, “Patient privacy and ownership of electronic health
records on a blockchain,” in Blockchain – ICBC 2019, J. Joshi, S. Nepal,
Q. Zhang, and L.-J. Zhang, Eds. Cham: Springer International
Publishing, 2019, pp. 95–111.

[17] C.-P. Schnorr, “Efficient identification and signatures for smart cards,”
in CRYPTO, 1989.

[18] E. Fujisaki and K. Suzuki, “Traceable ring signature.”
[19] N. van Saberhagen, “Cryptonote v 2.0,

https://cryptonote.org/whitepaper.pdf.”
[20] U. Feige, D. Lapidot, and A. Shamir, “Multiple non-interactive zero

knowledge proofs based on a single random string,” Proceedings [1990]
31st Annual Symposium on Foundations of Computer Science, pp. 308–
317 vol.1, 1990.

[21] B. Bnz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
“Bulletproofs: Short proofs for confidential transactions and more,” in
2018 IEEE Symposium on Security and Privacy (SP), May 2018, pp.
315–334.

[22] D. Chaum, Zero-Knowledge Undeniable Signatures (extended abstract).
Berlin, Heidelberg: Springer Berlin Heidelberg, 1991, pp. 458–464.
[Online]. Available: https://doi.org/10.1007/3-540-46877-3 41

APPENDIX

Proof of theorem 1

Proof. Since ck = r− dkw and Y ik = wXi
k, we have ckAk +

dkBk = ckAk + dkwAk = (ck + dkw)Ak = (r − dkw +
dkw)Ak = rAk = Ek.

Also, Dk =
∑t
i=2 hiYik =

∑t
i=2 hi(wXik) =

w
∑t
i=2 hiXik = wCk. So, we have, ckCk +dkDk = ckCk +

dkwCk = (ck +dkw)Ck = (r−dkw+dkw)Ck = rCk = Fk.
Now, ∀j 6= k,Ej = cjAj + djBj and Fj = cjCj + djDj ,
because that is how they are computed by the prover. Hence,
the verifier would compute the same hash h and since dk =

h −
∑
j 6=k dj , we have h = dk +

∑
j 6=k dj =

∑
j dj . Hence,

the verifier would return 1.

Proof of theorem 2

Proof. We define the following interactive protocol for prov-
ing this fact.

• The prover sends (S) to the verifier.
• The verifier chooses t random hi ← F∗q where h2 = 1.
• The verifier sends (hi) to the prover.
• The prover chooses r ← F∗q
• ∀j 6= k, the prover chooses cj , dj ← F∗q
• The prover computes
Aj = X1j ,
Bj = Y1j ,
Cj =

∑t
i=2 hiXij ,

Dj =
∑t
i=2 hiYij

• ∀j 6= k, the prover computes Ej = cjAj + djBj ,
Fj = cjCj + djDj

• The prover computes Ek = rAk, Fk = rCk
• The provers sends (Ej , F j) to the verifier.
• The verifier chooses h← F∗q and sends h to the prover.
• The prover computes dk = h−

∑
j 6=k dj

• The prover computes ck = r − dkw
• The prover sends π = ((cj , dj)) to the verifier.
• The verifier computes
Aj = X1j ,
Bj = Y1j ,
Cj =

∑t
i=2 hiXij ,

Dj =
∑t
i=2 hiYij

• The verifier checks if Ej = cjAj + djBj ,
F j = cjCj + djDj . If not, the verifier rejects the proof
and exits.

• The verifier checks if h ?
=
∑
j dj . If not, the verifier

rejects the proof, otherwise, the verifier accepts the proof.

We now prove the following lemma -

Lemma 1. If S does not have any linear tuple, the probability
of a successful verification is (1− (1− 1/q)n) + (1−1/q)n

q '
(n+ 1)/q.

Proof. There can be two cases to consider.

1) There exists some k such that ∃w[Bk = wAk ∧Dk =
wCk]. Since S does not contain any linear tuple, there
is some i such that Yik 6= wXik. Since the choices
hi∀i > 2 are completely random, the probability of this
case happening for any particular k is 1/q considering
the tuple ((Xk2, Yk2), (Xk3, Yk3), ..., (Xkt, Ykt)) is not
a linear tuple. Otherwise the probability is 0. Hence, the
probability of this happening for at least one tuple in n
tuples is at most 1− (1− 1/q)n.

2) Otherwise @w[Bk = wAk ∧ Dk = wCk]. By the time
the have of h is available, value of (Ej , F j) are already
committed, so in this case, the probability of successful
verification is 1/q.

52

Authorized licensed use limited to: Carleton University. Downloaded on August 01,2020 at 02:40:31 UTC from IEEE Xplore. Restrictions apply.

Hence, the maximum probability of a successful verification
is (1 − (1 − 1/q)n) + (1−1/q)n

q . For a large q, this is almost
equal to (n+ 1)/q.

Now we consider our main theorem. For simplicity, we
can consider all the outputs hi to be coming from a single
random oracle call that returns a tuple of values in (Fq)t. Let
us assume that, for an S containing no linear tuple, a PPTA
A can produce a valid proof with a probability ε using Q1

queries to the first oracle and Q2 queries to the second oracle.
We break the interactive version using A.

We simulate the proof oracle S in the following manner -
• ∀j, choose cj , dj ← F∗q
• Compute h2 = 1,
hi = Hq(hi−1,S

′)∀3 ≤ i ≤ t
• Compute
A′j = X1j ,
B′j = Y1j ,

C ′j =
∑t
i=2 hiXij ,

D′j =
∑t
i=2 hiYij

• ∀j, set E′j = cjA
′
j + djB

′
j ,

F ′j = cjC
′
j + djD

′
j

• Compute h =
∑
j dj

• Output π = ((cj , dj))

Now, an inner random oracle simulator OS is constructed
in the following manner -
• If an input was seen before, return the same output as

before.
• Else if the input is (m′,S′, (E′j , F ′j)) for any of the

queries made in proof oracle, return
∑
j dj .

• Else for any other input x, generate h ← F∗q and return
h.

We simulate the first hash function the following way -
• Select random numbers a← {1...Q1}.
• Else if the input is any (m,S, (E′j , F ′j)) used in the

proof oracle , return
∑
j dj for the same.

• Else if the call is ath call to the random oracle, send the
input to the interactive verifier and receive (hi) from the
verifier and return it.

• Else generate hi ← F∗q and return (hi).
Similarly, we simulate the second hash function the follow-

ing way -
• Select random numbers b← {1...Q2}.
• If the current input has been seen before, return the stored

output for the given input.
• Else if the call is bth call to the random oracle, send the

input to the interactive verifier and receive h from the
verifier and return it.

• Else for input x, return OS(x).
We run A with the simulated oracle. Now, there is a 1/Q1

chance that A uses ath call to the oracle to use the hi values
and there is a 1/Q2 chance that A uses bth call to the oracle
to use the h value. If it did so, it has a probability of ε of
successful break. Hence the total probability of a successful

break of the interactive protocol is ε
Q1Q2

. Hence, ε
Q1Q2

≤
(n+ 1)/q ⇒ ε ≤ (n+1)Q1Q2

q .

Proof of theorem 3

Proof. Suppose there is a P′ that does produce some valid
π for the commitment (m,S, (Ej , F j)) passed to the random
oracle with a probability δ with the help of maximum Q oracle
queries to the second oracle. We provide the definition for
the extractor E. E uses the algorithm P ′ (‖S‖ + 1) times
with different simulators for the random oracle. E produces
a random oracle simulator and the proof oracle simulator OP
in the following manner -

1) If a query to any of the oracles was seen before, it returns
the same value as before.

2) If a query (m′,S′) is made to the oracle OP , the oracle
OP are simulated in the following manner -
• ∀j, choose cj , dj ← F∗q
• Compute h2 = 1,
hi = Hq(hi−1,S

′)∀3 ≤ i ≤ t
• Compute
A′j = X1j ,
B′j = Y1j ,

C ′j =
∑t
i=2 hiXij ,

D′j =
∑t
i=2 hiYij

• ∀j, set E′j = cjA
′
j + djB

′
j ,

F ′j = cjC
′
j + djD

′
j

• Compute h =
∑
j dj

• Output π = ((cj , dj))

and the random oracle is simulated to return h when
queried for (m′,S′, (E′j , F ′j)) for any query (m′,S′)
made to OP . It is easy to check that this would make
the proofs look valid under the simulated random oracle.

3) Otherwise, for any query x to the random oracle simula-
tor, the oracle simulator returns a random value chosen
uniformly from F∗q .

We rewind P′ to right after the point it has chosen the hash
argument (m,S, (Ej , F j)) repeated ‖S‖ times so that at least
two of the runs are for the same linear tuple in the set S.
When we rewind the program P′, we also rewind the oracle
simulators upto the same point. We run the rest of P′ with
the oracle simulator so that the simulators now return different
values. The probability of P′ using the index of query in the
second time is at least 1/Q. Also, the minimum probability
of passing the validation for two different challenges h and
h′ is at least δ(δ − 1/q). Since the validation passes, it must
be true that there is some index k so that the proofs π and
π′ for the challenges h and h′ respectively are dk and d′k
respectively such that dk 6= d′k. Also, by proof of lemma 1,
we know that this k is the index of the linear member tuple.
So, we must have Ek = ckAk + dkBk = c′kAk + d′kBk ⇒
ck+dkw = c′k+d′kw. This implies w =

c′k−ck
dk−d′k

since dk 6= d′k.
The computatation can be repeated for all possible value for
k and the correct one can be verified by checking whether

53

Authorized licensed use limited to: Carleton University. Downloaded on August 01,2020 at 02:40:31 UTC from IEEE Xplore. Restrictions apply.

Fk = wEk. Hence the extractor can extract the knowledge of
w with a probability of at least 1

Qδ(δ − 1/q).

Proof of theorem 4

Proof. Suppose there exists some A such that
|Pr[π ← P(m,S, k, w);A(m,S, π) = k] − 1/||S||| = ε. We
will use this to create a solver for the DDH problem. Given the
DDH problem A,B,C,D, we design the following algorithm
with a simulated random oracle.
• Generate k ← {1..t}.
• Choose r1, r2, ..., rt ← F∗q . We compute Xi = riA and
Y i = riB for each i ∈ {1..t − 1}. This forms t − 1
elements of our linear t-tuple X. The last element is
(C,D).

• Choose random points for the other t-tuples to for the set
S. Keep the X at index k.

• Generate m← 1∗.
• Compute h2 = 1,
hi = Hq(hi−1,S)∀3 ≤ i ≤ t

• Compute
Aj = X1j ,
Bj = Y1j ,
Cj =

∑t
i=2 hiXij ,

Dj =
∑t
i=2 hiYij

• set Ej = cjAj + djBj ,
F j = cjCj + djDj

• Design the simulated random oracle in the following way
– If the input is (m,S, (Ej , F j)), return

∑
j dj .

– Else return Hq(input)

• Compute k′ = A(m,S, π) by passing the simulated
random oracle.

• If k ?
= k′ return 1, else 0.

Now, if D indeed is a DDH point, i.e. ∃(b, c)[B = bA∧C =
cA ∧D = bcA], the signature really is a valid signature w.r.t.
the simulated oracle and there really is a linear member tuple,
so Pr[k′ = k] = 1/||S|| ± ε. On the other hand, when D
is not really a DDH point, Pr[k′ = k] = 1/||S||. Hence,
the advantage of our algorithm = |Pr[k′ = k|∃(b, c)[B =
bA∧C = cA∧D = bcA]]−Pr[k′ = k|¬∃(b, c)[B = bA∧C =
cA∧D = bcA]] = 1/||S||±ε−1/||S|| = ±ε. So, the advantage
for our DDH solver is also ε.

Proof of theorem 5

Proof. We create the following simulator S.
• ∀j, choose cj , dj ← F∗q
• Compute h2 = 1,
hi = Hq(hi−1,S)∀3 ≤ i ≤ t

• Compute
A′j = X1j ,
B′j = Y1j ,

C ′j =
∑t
i=2 hiXij ,

D′j =
∑t
i=2 hiYij

• ∀j, set E′j = cjA
′
j + djB

′
j ,

F ′j = cjC
′
j + djD

′
j

• Compute h =
∑
j dj

• Output π = ((cj , dj))

Now, the random oracle simulator OS is constructed in the
following manner -
• If an input was seen before, return the same output as

before.
• Else if the input is (m,S, (E′j , F ′j)), return

∑
j dj .

• Else for any other input x, return Hq(x).
Now, since cj , dj ← F∗q , both π1 and π2 have the same
statistical distribution. Hence, the probablity of predicting the
correct value of b is 1

2 for any PPTA.

Proof of theorem 6

Proof. Suppose there is a PPTA P′ that is capable of creating
π such that m′ 6= m′′∧V(π,m′,S′) = 1∧V(π,m′′,S′′) = 1
with a probability ε with Q queries to the random oracle.
Now, the algorithm P′ must have had invoked the random
oracle with values (m′, S′, (Ej , F j)) and (m′′, S′′, (Ej , F j))
(The value of (Ej , F j) don’t change as cj , dj are same). Since
the values π = (cj , dj) are same and

∑
j dj has to be equal

to the output of the oracle, it must be so that the oracle has
returned the same value for both the inputs. The probability
of the two oracle value being equal among Q invocations is
1−

qPQ
qQ

= 1− q(q−1)(q−2)...(q−Q+1)
qQ

< 1− (q−Q+1)Q

qQ
which

is negligible.

Proof of theorem 7

Proof. The completeness theorem is trivially true since the
verification protocol is deterministically computed, and the
computations listed can be checked to be correct.

Proof of theorem 8

Proof. A signature oracle must contain a proof oracle since the
proof is part of the signature. The verification of the signature
requires a valid computation of the ZkPLMT π. Let us assume
that the adversary A can produce this proof with a probability
δ. Theorem 3 proves that if an adversary is able to create π
with a probability δ in the presence of the proof oracle, then
it should be able to extract the discrete logarithm for some Yk
with a probability ε = 1

Qδ(δ−1/q) where Q is the number of
queries to the proof oracle. The discrete log is the private key
for this signature. We now consider theorem 5 and construct
an advarsary that distinguishes the simulator from the true
random oracle and prover. Since the simulator S in theorem 5
does not use w and only takes (m,S), any extractor can only
extract w from the output of S with a negligible probability
(say σ). However, for the real prover, the probability of
extraction is ε. Hence, the distinguisher can be implemented by
extracting w using the extractor, and trying out all of the tuples
in S to check whether it is correct. If w is correct, output 2,
else output 1. So, η = Pr[b = b′] = Pr[b′ = 1|b = 1]Pr[b =
1] +Pr[b′ = 2|b = 2]Pr[b = 2] ≥ 1

2 (1− σ) + 1
2ε = 1

2 + ε−σ
2 .

Since σ is negligible and theorem 5 proves that η − 1
2 is

negligible, so is ε. Hence, δ is also negligible.

54

Authorized licensed use limited to: Carleton University. Downloaded on August 01,2020 at 02:40:31 UTC from IEEE Xplore. Restrictions apply.

Proof of theorem 9

Proof. Suppose there exists an adversary AO that can distin-
guish b from b′ with a non-negligible probability δ. We use it to
break the zero-knowledge property of the underlying ZkPLMT.
Let S be the simulator for the zero-knowledge property of
the ZkPLMT. We construct the following distinguisher for
distinguishing between the simulator and the true prover.
• Choose public keys {Q1, Q2, ..., Qm} randomly contain-

ing Q. We assume that the index of Q in this array is k,
i.e. Q = Qk.

• Compute Ri = qP i.
• Generate k1 ← {0..n}, k2 =← {0..n} \ {k}
• Genetate b1 ← {1, 2}. Assign k := kb1 .
• Compute the linear tuple X = ((G,Q), (P i, Ri)).
• Compute non-linear tuples Yj = ((G,Qj), (P i, Ri)) for

all j 6= k. Assign Yk := X.
• Provide (M,Yj, k, q) to the ZkPMLT zero-knowledge

challenger
• The Challenger generates random b← {1, 2}.
• The Challenger computes the simulation (π1,OS) =
S(M,Yj)

• The Challenger computes the proof π2 =
P′
OS (M,Yj, k, q)

• The Challenger shares the signature (πb,OS)
• Compute b′1 = AO(Π, k1, k2,M, pkjs, pk

i
d).

• If b′1 = b1, return b′ = 2, else return b′ = 1.
Since the ZkPLMT simulator does not use k, the probability of
b′1 = b1 if the ZkPLMT challenger used a simulator would be
1
2 . Otherwise, if the ZkPLMT challenger used the true signing
algorithm, the probability of b′1 = b1 would be 1

2 ± δ. Hence,
the probability of b = b′ is Pr[b = 1] × Pr[b′ = 1|b = 1] +
Pr[b = 2]×Pr[b′ = 2|b = 2] = 1

2 ×
1
2 + 1

2 × (1
2 ±δ) = 1

2 ±
δ
2 .

Since δ is non-negligible, so is δ/2.

Proof of theorem 10

Proof. It follows directly from theorem 6.

Proof of theorem 11

Proof. By theorem 2, it must be that there exist some k such
that ((G,Qk), (P i, Ri)) is a linear tuple with a overwhelming
probability. Also, by theorem 3, the signer must know qk ∈ Fq
such that Qk = qkG with a overwhelming probability. Since
((G,Qk), (P i, Ri)) is a linear tuple, Ri = qkP

i = qkp
iG =

piqkG = piQk. Hence, the lth deanonymizer can find out
Qk = p−1l Rl with a overwhelming probability.

Proof of theorem 12

Proof. By theorem 2, it is proven that there exist some k such
that ((G,Qk), (P i, Ri)) is a linear tuple. Also, by theorem
11, we know that the lth deanonymizer can find out Qk =
p−1l Rl. Hence the theorem is trivially true as the computation
is deterministically correct given fixed t, u, pl.

Proof of theorem 13

Proof. By theorem 2, it is proven that there exist some k such
that ((G,Qk), (P i, Ri)) is a linear tuple. Also, by theorem 11,
we know that the lth deanonymizer can find out Qk = p−1l Rl.
Suppose an advarsary can provide a valid proof even when
Qk 6= p−1l Rl.

The prover must either have computed D = pC correctly, or
Hq produced the same output for two different values. Let us
assume that (G,Qk) and (Pl, Rl) are not linearly dependent.
Suppose Pl = pG. Now, it could happen that the verifier had
sent the value C ′ = t′G+u′Q where t′ = t−ks, u′ = u+s for
some s. This means C ′ = (t−ks)G+(u+s)Q = tG+uQ =
C. Hence the prover would have no way of distinguishing the
two cases.

However, given C = tG + uQ and D = tPl + uRl as the
verifier checked, there is only one value of t that would satisfy
the verifier checks unless (G,Q) and (Pl, Rl) are linearly
dependent (otherwise one can solve for t and u given the other
values with infinite computational power). Since the prover
could only see C, it cannot distinguish between u and u′; so
the probability of it computing D correctly is at most 1/q.
The probability of a different D having the same hash is 1/q.
Hence, the probability of a successful verification for a non-
linear set of pairs of points is at most 1/q+1/q(1−1/q).

Proof of theorem 14

Proof. To prove it, we must construct a deterministic algo-
rithm M such that given a black box access to any arbitrary
program acting as a verifier V∗(possibly malicious),M is able
to generate transcript that is computationally indistinguishable
from an actual transcript of the interaction, i.e. (C,D, h, t, u),
by any PPTA A.

Our simulator M works as follows with black-box access
to V∗.

1) M receives C from V∗.
2) M generates h′ ← F∗q and sends to V∗.
3) M receives (t, u) from V∗.
4) M checks C = tG+uQ, and computes D = tPl+uRl

. If the check fails, the simulator outputs (C,D, h, t, u)
5) M computes h = Hq(D)
6) M again rewinds the verifier V∗ to the point after the

verifier returned C, but passes h instead of h′ in this
run.

7) If V∗ outputs the same values for (t, u), the simulator
outputs the transcript (C,D, h, t, u). Otherwise it out-
puts (C,D, h′, t, u).

If the check C = tG + uQ succeeds and V∗ outputs
the same values for u, t for both runs, (C,D, h, t, u) pass
all tests for correctness. Hence, the generated transcript is
indeed indistinguishable from an actual transcript by any
PPTA. Otherwise, the failure scripts are indistinguishable.

55

Authorized licensed use limited to: Carleton University. Downloaded on August 01,2020 at 02:40:31 UTC from IEEE Xplore. Restrictions apply.

