
Redactable Blockchain using Enhanced Chameleon
Hash Function

1st Kondapally Ashritha
TIFAC-CORE in Cyber Security,

Amrita School of Engineering,
Coimbatore,

Amrita Vishwa Vidyapeetham, India
ashrithakondapally@gmail.com

2nd Sindhu M
TIFAC-CORE in Cyber Security,

Amrita School of Engineering,
Coimbatore,

Amrita Vishwa Vidyapeetham, India
m sindhu@cb.amrita.edu

3rd Lakshmy KV
TIFAC-CORE in Cyber Security,

Amrita School of Engineering,
Coimbatore,

Amrita Vishwa Vidyapeetham, India
kv lakshmy@cb.amrita.edu

Abstract—Immutability is a core principle of blockchain plat-
forms that help all participants to have an exact global log of
transactions. Immutability is easier to achieve in permissioned
blockchain platforms where a trusted group are the validators.
In public platforms, this vital property of blockchain can be
achieved only through decentralized economic mechanisms like
Proof-of-Work(PoW). Blockchain along with the concept of asset
tokenization provides liquidity to markets like stock trading and
exchange other intangible objects. With changes in regulatory
policies and/or government laws, there could be a requisite to
alter the contents in such markets. We propose an idea of using
Chameleon hash functions that will enable modification of a
block without changing other block contents. In our proposal, the
trapdoor key used to redact a block is split among major valida-
tors and is reconstructed using Multi-Party Computation(MPC).
Redaction happens when the major validators agree the suggested
changes by digitally signing the proposal. This eliminates the
need to rely on a trusted party. We also propose an idea of using
second trapdoor key that will be with the creator of the block.
This can be used in scenarios where the block redaction should
not happen without the consent of the creator.

Index Terms—Chameleon hash function, Blockchain, Multi-
party Computation, Ephemeral key, Secret Sharing, Digital
Signatures

I. INTRODUCTION

Blockchain technology brings together two important as-
pects that shape the new internet. The idea of decentralization
along with de-duplication has found enormous applications
ranging from basic financial transactions to complex smart
contracts. Blockchain technology is built in such a way that
once the data is published in the chain, it cannot be removed
or modified [1]. This key principle of immutability is very
important in order to achieve data integrity in a trust less dis-
tributed network. Even though 100% immutability can never
be theoretically promised in blockchain environment, strong
economic practices like Proof-of-Work (PoW), Proof-of-Stake
(PoS) gives a practical assurance that only one common
ledger is maintained. In permissioned blockchain platforms
like Ripple where the validators are fixed, it is easy to achieve
immutability. It is always debatable to provide power to certain
people to modify the already existing contents of a blockchain
as that would hinder the normal users to use the blockchain
where they have to trust unknown parties. Hence before adding

the feature of redactablilty in distributed ledger platforms like
blockchain, it is important to make sure that the possibility of
validators cheating the network is minimum.

Since blockchain is basically a trust less distributed system,
100% cheating immunity cannot be guaranteed. In these
systems, the probability of a user cheating is inversely pro-
portional to the amount of investments he has made on the
particular blockchain platform. For example, in Bitcoin, the
probability of a miner who owns 20% mining power of the
overall network will cheat is very minimal since he has a
considerable amount of economic interest on bitcoin whereas
a normal user with almost zero mining power will not have
lots at stake even if bitcoin platform falls. Thus the power
of redactability should only be given to those who owns a
substantial amount of mining power.

In blockchain 1.0, which is mainly designed for carrying
out financial transactions, the need for reversing a transaction
is not required. But with the concepts of asset tokenization
where most of the tangible and intangible objects of the
real world are converted into crypto tokens and binded with
the blockchain platform, there could occur scenarios where
redaction is necessary. For example, consider a scenario where
a land asset is converted into a crypto token and published in
the blockchain, later if the land laws of respective country
changes, the blockchain platform will be obliged to change
the content related to that asset. Redactability of blockchain
can be achieved by generating blocks using a special type
of hash function called Chameleon Hash Function (CHF) [2].
Chameleon hash functions will have corresponding trapdoor
key using which one or many blocks can be redacted depend-
ing upon the design.

In private or permissioned blockchain, the key can be in the
hands of a Trusted Third Party (TTP) who can solely redact
the blocks in the blockchain. This trusted third party can be
determined based upon voting of validators who are fixed in
case of permissioned blockchain. For example, in Ripple, the
18 validator nodes can vote among themselves and elect a node
as the TTP. However, such kind of voting mechanism is not
possible in a public network where there are no fixed validators
for voting and there exists a very minimal trust between the
users [3]. In such a scenario, we are proposing to split the

2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)

978-1-5386-9533-3/19/$31.00 ©2019 IEEE 323

trapdoor key into n shares and distribute among the major
miners. The probability that the miners will pool together and
cheat on the network is very less because of the economic
investments they are putting in. For example, in Bitcoin, the
trapdoor key can be split into 7 shares and distributed among
the top 7 miners, ranked based upon the number of blocks
published.

The paper is organized in the following manner: Section
II describes basic cryptographic notations and definitions that
are used throughout this paper. Section III explains the existing
model and flaws in it. Section IV describes the proposed archi-
tecture, security aspects of the new model. In Section V, we
look into different applications of the proposed architecture.
The paper concludes in Section VI where future works and
challenges are discussed.

II. CRYPTOGRAPHIC TERMINOLOGIES

A. Chameleon Hash Function

Chameleon hash functions are special type of cryptographic
hash functions which can generate hash collisions efficiently
with the knowledge of the trapdoor key.

Consider a message m and a randomly chosen parameter r.
Given a trapdoor key tk, the trapdoor holder can find the pairs
(m, r) and (m′, r′) using chameleon hash function such that
CH(m, r) = CH(m′, r′) where CH() represents chameleon
hash function. Note that the messages m and m′ should be
different i.e., m 6= m′.

A standard chameleon hash function consists of efficient
algorithms such as Key Generation (HG), Hash Generation
(H), Hash Verification (HV) and Hash Collision (HC) which
is specified as follows:

CH = (HG,H,HV,HC)

1) HG(1n) = (hk, tk): It takes the security parameter
n ∈ N as input, and gives public hash key hk and a
secret trapdoor key t as output.

2) H(hk,m) = (h, z): It takes hash key hk, a message
m ∈ M , and a random value r ∈ R as input, and
produces a pair (h, z) that contains the hash value h
and a check string z.

3) D = HV (hk,m, (h, z)): It takes a message
m ∈ M , the hash value h, and a check string z as
input, and outputs a bit D that equals 1 if (h, z) is a
valid hash pair for the message m, otherwise D equals 0.

4) C = HC(t, (h,m, z),m′): It takes the trapdoor key
t, a valid tuple (h,m, z), and a new message m′ ∈ M
as input, and outputs a new check string z′ such that

HV (hk,m, (h, z)) = HV (hk,m′, (h, z′)) = 1

B. Secret Sharing

Secret Sharing is a group oriented cryptographic method
that allows shifting the knowledge of secret information from

a single entity to a group of entities. It facilitates a secure way
of storing and transmitting confidential information as shares
[4]. Specific conditions should be satisfied to reveal the secret
information. Each of n participants is provided with one share
each, and any group of t (threshold) or more participants can
combine their shares to generate the secret information.

For example, if a user wants to divide a secret S into two
parts, he can choose a random S1 as first secret and determine
S2 by performing an XOR operation with S and S1 as inputs.

Shamir’s threshold scheme is based on polynomial interpo-
lation that allows any k out of n participants to recover the
secret. The secret S is divided into n shares S1, . . . , Sn in
such a way that:

1) It is easy to reconstruct the secret S with the knowledge
of any k or more Si shares.

2) The secret remains completely undetermined with the
knowledge of any k − 1 or fewer Si shares.

This scheme is known as (k, n) threshold scheme. If k = n,
then every share Si of the secret S is required to reconstruct
the secret.

Fig. 1. (k, n) secret sharing scheme

Shamir’s secret sharing scheme is a type of Linear Secret
Sharing (LSS) scheme that is known to have lot of vulnera-
bilities. Therefore, to improve the security we are proposing
to use a Non-Linear Secret Sharing (NLSS) scheme.

C. Secure Multi-party Computation

Multi-Party Computation (MPC) is a method in which the
parties jointly compute a function over their private inputs
[5]. The inputs are obtained in the form of shares from secret
sharing scheme.

Consider a Multi-party computation in which n users,
u1, u2, ..., un each have their input data, d1, d2, ..., dn respec-
tively. All the users compute the value of a public function f
on their input data: f(d1, d2, ..., dn) while keeping their own
inputs secret.

For example, consider two parties Alice and Bob, with
inputs A and B respectively. To find out the highest value
of the two inputs, without revealing their individual values to
each other, consider the following two cases:

2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)

324

1) There exists a trusted party to whom the participants
send their respective inputs and the trusted party calcu-
lates the maximum value amongst the two and reports
the same to both Alice and Bob.

2) When there is no trusted party, Alice and Bob performs
a two party computation (a generic model of Multi-party
computation), with each other and then result will only
reveal who has the highest value not the input figures of
individual parties.

D. Digital Signatures

A Digital Signature is a mathematical scheme that is used
for protecting the authenticity of digital documents. A signa-
ture is said to be valid if and only if it provides authentication,
non-repudiation as well as integrity. They are widely used
in financial transactions to detect forgeries. Digital signatures
usually use asymmetric cryptography which gives the receiver
a trust that the message was sent by the original sender and
is not tampered.

A digital signature [6], [7] scheme typically consists of 3
phases namely Key generation (G), Signing (S) and Signature
Verification (V).

1) Key Generation: A Security parameter r is randomly
and 1r is given as input. Public key pk and its corre-
sponding private key sk is obtained as output.

(pk, sk)← G(1n)

2) Signing: The private key sk, that is generated is used
for signing a message m and produces a signature t.

t← S(sk,m)

3) Signature Verification: The message m, public key
pk and signature t is given as input to the verification
algorithm and it either accepts (D=0) or rejects (D=1)
the message.

D ← V (pk, x, t)

For correctness, S and V must satisfy

Pr[(pk, sk)← G(1n), V (pk, x, S(sk,m)) = accepted] = 1

III. EXISTING SYSTEM

In the existing model of redactable blockchain [8], the
trapdoor key k is generated initially and is split into n shares
by using Linear Secret Sharing scheme. The n shares are
distributed among the top n validators. To redact a block,
all the n validators need to perform a secure Multi-party
computation to regenerate the trapdoor key. By using the key
k, the validator can redact one block or any number of blocks.
During the block verification process, the validators compute
hash collision of the new and the previous content so that the
hash does not change. (Refer Figure 2)

A block contains three pieces of information, the
PrevHash, Transactions and a random parameter
Randomness. The PrevHash and Transactions values
are determined by the miner and Randomness is used
in order to add redactability feature. The hash collision

is computed by randomly trying out different values for
Randomness parameter so that the modified content along
with Randomness gives the same hash as it was before.

Fig. 2. Redactable Blockchain

Consider a blockchain platform that uses previous hash
value, PrevHash, the final merkle hash of proposed trans-
actions, Transactions and a random value r. If a validator
proposes changes to a block with hash value s, he can modify
the previous hash value and/or the transaction contents that
will modify the Transactions value. The random value r will
be modified such that the final hash value s will not change.
This is important because the next blocks in the blockchain
are linked to blockchain with hash value s.

For example, if a validator want to change the PrevHash s
and transactions Merkle root hash x and random value r of a
block to new PrevHash s′ and new transactions Merkle root
hash x′ , he has to determine a hash collision value r′ that
will make the final hash value unchanged using a chameleon
hash function CH(). (Refer Figure 3)

CH(s, x, r) = CH(s′, x′, r′)

Fig. 3. Redactable Blockchain internal structure

A. Issues in Existing System
1) No Content Verification: During redaction, when a

chosen validator redacts a block, the contents inside the
block are not verified by other validators. They only
calculate a hash collision value that will make sure that
the overall hash value of the block remains unaltered.
Thus, malicious validator can modify the contents as he
wishes.

2) Secret sharing: The model is based on linearly splitting
the secret shares and hence is vulnerable to many attacks
like Tompa-Woll attack.

2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)

325

3) Single trapdoor key: Since only one trapdoor key is
used, once a validator regenerates the trapdoor key [9],
he can use it multiple times on multiple blocks.

4) No consent of initial block publisher: Redaction is
done without the knowledge of the actual block pub-
lisher. In platforms where block reward is provided,
there exists some scenarios where the publisher should
also be involved while redacting the block.

IV. PROPOSED SYSTEM

In this section, we will be focusing upon the issues of the
existing model discussed in section III-A and propose design
models that can reduce if not eliminate them.

A. Content Verification

If a validator wants to redact a block, he should first
compute the trapdoor key by collaborating with other share
holders of the key. Before publishing a block, the validator has
to first broadcast the changes among the key holders. The chain
will be redacted only if all the validators agree the suggested
changes by digitally signing the newly proposed block. In this
way, one validator cannot solely modify contents of any block
without the agreement from other validators.

B. Secret Sharing

In Tompa-Woll attack, one of the validators can submit a
false share such that only he can be able to obtain the correct
secret. This is mainly due to the linearity property. To resist
from this attacks, we are proposing an idea of using Non-
Linear Secret Sharing [10], [11] instead of Shamir’s secret
sharing which is a type of Linear Secret Sharing scheme.
Cheatings [12] can be corrected in non-linear schemes by
using decoding techniques like Read-Solomon codes.

A Non-linear secret sharing scheme (k, n) for n parties such
that

1) any k or more shares will regenerate the secret value.
2) no information about the secret can be obtained with

k − 1 or fewer shares.
An access structure is a function that is usually defined as

the collection of shares that can be used for reconstructing a
secret. Unlike Linear secret sharing, in Non-linear secret shar-
ing scheme, the access structure cannot be realized because a
non-linear function is used in a way that the structure of each
and every share is different and hence a malicious user cannot
regenerate the secret by submitting a false share.

C. Ephemeral Trapdoor Key

By using an ephemeral key that is specific to a particular
block, along with the trapdoor key we can restrict the modifi-
cations a validator can make. Now, in order to redact a block,
the validator will require both the trapdoor key that has to
be regenerated by performing secure Multi-party computation
with other validators as well as the ephemeral key that can be
given to the initial proposer of the block.

A chameleon hash function with ephemeral
trapdoor key [13] is a tuple of five algorithms
(ParGen,KGen,Hash,HashChk,Adapt)

1) ParGen: A security parameter λ is taken as input and
the public parameter ppch is obtained as output.

ppch ← ParGen(1λ)

2) KGen: The public parameter ppch is taken as input and
the private key pkch and public key skch are obtained
as output.

(skch, pkch)← KGen(ppch)

.
3) Hash: It takes the public key pkch, and a message m

as input and produces a hash h, randomness r, and the
ephemeral trapdoor key tk as output.

(h, r, tk)← Hash(pkch,m)

.
4) HashChk: It takes as input the public key pkch, a

message m, a hash h, and randomness r. It outputs a
decision bit d ∈ {true, false}, which indicates whether
the hash is correct or not.

d← HashChk(pkch,m, r, h)

5) Adapt: It takes skch, the old message m, the old
randomness r, the new message m′, the hash h, and
the trapdoor information tk as input and outputs a new
randomness r′ for the message m′.

r′ : r′ ← Adapt(skch,m,m
′, r, h, tk)

D. Consent from block publisher

By keeping the ephemeral key with the initial block pro-
poser, the validator will require permission from the parent
block publisher to make changes to a particular block. (Refer
Table I)

TABLE I
COMPARISON OF EXISTING AND PROPOSED MODELS

Property Existing Model Proposed Model

Secret Sharing LSS NLSS

Ephemeral Key No Yes

Content Verification No Yes

Multiple Block Redaction Yes No

Initial Publisher Approval No Yes

E. Architecture

In the proposed system, we are using an ephemeral trapdoor
key K that is specific to a particular block S. This key K will
be with the initial proposer of the block S. The transactions
x inside the block S is locked with the key K. By this
way, to modify the transaction x to x′, the permission of the
initial block publisher is required. (Refer Figure 4). The main
trapdoor key is split using a Non-linear secret sharing scheme
and shared among the top n validators of the blockchain

2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)

326

Fig. 4. Block Structure in Redactable Blockchain using Ephemeral trapdoor
key

platform. To redact a block, all the validators will have to
perform a secure Multi-party computation to regenerate the
secret trapdoor key. Further, before publishing the modified
block, all the share holders of the trapdoor key will have to
agree to the changes by digitally signing the transaction. By
this way, we can make sure that while redacting a block all
the major validators and also the initial block publisher verify
and agree with the modified content.

1) Deletion of a Block: There could be scenarios where a
particular block S contain entire list of spam transactions. In
such cases, the validators could either delete the transactions x
of the block S and hence publish the block S with transactions
x′ = 0. This is similar to the architecture proposed in section
IV-E. This solution is not ideal because we are storing a block
S with no content in it. (Refer Figure 5) By slightly modifying
the architecture in section IV-E, we can delete the entire block
from the blockchain. For example, if a validator wants to delete
a block S which has a succeeding block S2 and a preceding
block S1, he can achieve it by changing the PrevHash of block
S2 from s to s1.

In such cases, the PrevHash should also be locked with
the ephemeral key. The ephemeral key K of the block to be
deleted is used to remove the link of the block S from the
blockchain.

Fig. 5. Block Deletion in Blockchain

2) Revoking the Ephemeral Key: In Public blockchain
platforms where anyone can mine a block, the ephemeral
key will be lost if the validator with relatively low mining
power mines a block and then leaves the network. Now, it
will be impossible to redact a block as the ephemeral key is
not available. To eradicate such circumstances, we propose a
ephemeral key revocation scheme where the miner will have to

relinquish the secret ephemeral key after a particular amount
of time.

With little modifications, this can also be extended to
regenerate the main trapdoor key where a holder of one share
is planning to leave the network.

V. APPLICATIONS

Redactability is easier to achieve in private blockchain
because the validators are fixed whereas in a public blockchain
where anyone could mine a block. In this section, we will
explain about the two different proposals based on the type of
blockchain in detail.

A. Permissioned Blockchain

Consider a permissioned blockchain with n permanent
validators. Here, the trap- door key k will be split into n shares
using non-linear secret sharing. In this case, we do not need an
ephemeral key since any block will be published by the fixed
validators who already have the share of the main trapdoor
key.

B. Public Blockchain

In a public blockchain like Bitcoin, anyone could join a
network and publish a block, it is theoretically impossible to
split the main trapdoor key and give shares to all the miners.
By specifically considering Bitcoin where a pool of seven
miners publish most of the blocks, the trapdoor key can be
divided into seven shares and distributed among them. But,
for a particular block, the publisher could be someone who is
not among the top seven miners. Thus, we need an ephemeral
trapdoor key to make sure that the initial proposer is also
involved in the redaction process.

C. Other Applications of Chameleon Hash Functions

1) Sanitizable Signatures: There exist some environments
where the different users can access same data depending
on their role. For example, consider a medical report in
which few portions of the data remain confidential and only
higher authorities can be able to access it. The authentication
and integrity is usually achieved by using digital signatures.
Sometimes there can be situations where an authorized third
party should modify the content in the document. But, if the
original signer of the document is not available or his/her key
is expired etc., then authorized third party should be able to
sign the document with a valid signature on behalf of original
signer without contacting him/her. This can be achieved by
using Sanitizable Signatures. The signer and the trusted party
agree upon the mutable portions of the document before the
modification such that the trusted party can modify only those
portions.

Consider a case where a trusted party wants to modify a
document. The original signer of the document t will partition
it into some n blocks. The signer selects some blocks out of
n blocks and signs it by computing the chameleon hash using
the public key pk of third party. Now, as the private key sk
is with the third party only he can be able to compute hash

2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)

327

collision and thus modify the selected portions of the block
without changing the signature i.e., the signature is valid.

2) Wireless Sensor Networks (WSN): Sensors are used in
Wireless Sensor Network (WSN) to collect the information
about temperature, sound, etc., at different locations, process
and send it back to the destination. Usually, a Multi- hop
network contains n number of nodes in which each and every
node contains one or more sensors. Sensor nodes can transfer
the information to other sensor nodes via a base station. The
information should not be altered during the transmission. If
two nodes say n1 and n2 wants to communicate with each
other, they must authenticate themselves before data transfer.
Authentication can be achieved by using Chameleon hash
function in which both the nodes n1 and n2 share a key k
through secure channel such that only the key holders can
compute the hash collisions.

3) Chameleon Signatures: In chameleon signature scheme,
the signer of a particular message m uses chameleon hash
function to compute the hash h. This hash can be signed by
using any signing algorithm. For example, if user A wants
to send a message to user B such that no other users should
be able to know information about the message, then user A
uses the chameleon hash function of user B, computes hash
h and signs it using any digital signature algorithm. When
user B receives the signature he can be able to verify that
the signature is valid by computing hash collision. In this
way, authentication is guaranteed and the signature is non-
transferable.

VI. CONCLUSION

The proposed model guarantees content verification as well
as improves the security of secret sharing mechanism by
using a Non-linear methods of secret sharing. By introducing
a second trapdoor key, this model also make sure that the
redaction does not happen without consent of the initial
publisher of the block. The content in the block can be verified
using digital signatures Since, ephemeral key is created for
every block, key management will be an issue. By introducing
Keyless schemes, system can be further improved.

REFERENCES

[1] Zyskind, Guy, and Oz Nathan. ”Decentralizing privacy: Using blockchain
to protect personal data.” Security and Privacy Workshops (SPW), 2015
IEEE. IEEE, 2015.

[2] Bellare, Mihir, and Todor Ristov. ”A characterization of chameleon hash
functions and new, efficient designs.” Journal of cryptology 27.4 (2014):
799-823.

[3] Ambili, K. N., M. Sindhu, and M. Sethumadhavan. ”On Federated and
Proof Of Validation Based Consensus Algorithms In Blockchain.” IOP
Conference Series: Materials Science and Engineering. Vol. 225. No. 1.
IOP Publishing, 2017.

[4] Feldman, Paul. ”A practical scheme for non-interactive verifiable secret
sharing.” Foundations of Computer Science, 1987., 28th Annual Sympo-
sium on. IEEE, 1987.

[5] Goldreich, Oded. ”Secure multi-party computation.” Manuscript. Prelim-
inary version 78 (1998).

[6] Rivest, Ronald L., Adi Shamir, and Leonard Adleman. ”A method for
obtaining digital signatures and public-key cryptosystems.” Communica-
tions of the ACM 21.2 (1978): 120-126.

[7] https://en.wikipedia.org/wiki/Digital signature

[8] Ateniese, Giuseppe, et al. ”Redactable blockchain-or-rewriting history
in bitcoin and friends.” Security and Privacy (EuroS&P), 2017 IEEE
European Symposium on. IEEE, 2017.

[9] Ateniese, Giuseppe, and Breno de Medeiros. ”On the key exposure
problem in chameleon hashes.” International Conference on Security in
Communication Networks. Springer, Berlin, Heidelberg, 2004.

[10] Zhang, WeiGuo, Xi Sun, and JunPo Yang. ”On constructing 1-cheating
immune secret-sharing functions.” International Journal of Computer
Mathematics 89.1 (2012): 30-34.

[11] dela Cruz, Romar, and Huaxiong Wang. ”Cheating-immune secret
sharing schemes from codes and cumulative arrays.” Cryptography and
Communications 5.1 (2013): 67-83.

[12] Pieprzyk, Josef, and Xian-Mo Zhang. ”On cheating immune secret
sharing.” Discrete Mathematics and Theoretical Computer Science 6.2
(2004): 253-264.

[13] Camenisch, Jan, et al. ”Chameleon-hashes with ephemeral trapdoors.”
IACR International Workshop on Public Key Cryptography. Springer,
Berlin, Heidelberg, 2017.

[14] Nakamoto, Satoshi. ”Bitcoin: A peer-to-peer electronic cash system.”
(2008).

[15] Antonopoulos, Andreas M. Mastering Bitcoin: unlocking digital cryp-
tocurrencies. ” O’Reilly Media, Inc.”, 2014.

2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)

328

