
PoPF: A Consensus Algorithm for JCLedger

Fu Xiang, Wang Huaimin, Shi Peichang, Mi Haibo
Science and Technology on Parallel and Distributed Laboratory

College of Computer, National University of Defense Technology
Changsha 410073, China
fuxiang13@nudt.edu.cn

Abstract—JointCloud is a new generation of cloud computing
model which facilitates developers to customize cloud services.
JCLedger is a blockchain based distributed ledger for
JointCloud computing which can make cloud resources exchange
more reliable and convenient, and it is the combination of
JointCloud and BlockChain. One of the most important elements
for creating JCLedger is the consensus algorithm. PoW (Proof of
Work) is the consensus algorithm for Bitcoin, which is proved to
be quite safe but needs much computing power. The original
PoW is not suitable for JCLedger because the identities of
participants are not equal in computing power, which may lead
to accounting monopoly, and the throughput cannot satisfy the
requirement of the massive and high-frequency transactions in
JointCloud. In this paper, we propose a PoW based consensus
algorithm called Proof of Participation and Fees (PoPF), which
can save much computing power and handled transactions more
efficiently for JCLedger. In our design, only the candidates have
the opportunities for mining and the candidates are chosen
according to the ranking which is determined by two factors: the
times of the participant to be the accountant and the fees the
participant has paid. The difficulty for candidates of solving the
PoW hash puzzle is different (the higher ranking means easier
for mining). The simulation experiment shows that the
distribution of accountants is well-balanced, that is to say, the
unequal computing power of participants in JointCloud is
shielded, and all the users who have enough contribution in
JCLedger will have the opportunities to be accountants.

Keywords—JCLedger; JointCloud; consensus algorithm; PoW

I.� INTRODUCTION
The trend of Economic Globalization has provided the trade

in global cross-border goods and services with unprecedented
opportunities [1]. It also brought new demand for full-time and
global service in cloud computing which is explosive, global
and diverse. However, the new resource needs cannot be
satisfied by a traditional single cloud service provider's service
capability. JointCloud is a cross-cloud cooperation architecture
for integrated Internet service customization, which is funded
by China’s Ministry of Science and Technology as a part of the
National Key Program for Cloud Computing and Big Data.
JointCloud not only focuses on a vertical integration of cloud
resources but also a horizontal cooperation among CSPs in the
form of service-oriented computing, by which CSPs evolve
along with the JointCloud ecosystem to better serve globalized
computation at low cost, high availability and assured QoS [2].

To make cloud resources and value exchange more reliable
and convenient in JointCloud, we have proposed JointCloud
Collaboration Environment (JCCE) architecture in our former

work. JCCE is mainly to search for the fair trade and
interconnection among different CSPs [3]. The key research on
JCCE is how to effectively support services like providing
auction, bid, registration of service capability, service query,
service binding, auditable and traceable transaction behavior.
JCCE contains several services which provide basic services
together for enabling the cooperation among independent
clouds based on distributed ledger. The distributed ledger is
also called JCLedger which was proposed in our former work
[4].

In this paper, we propose a PoW based consensus algorithm
for JCLedger, which can avoid the massive cost of computing
power, shield the unequal computing power of participants to
give them equal opportunities for accounting. It is more
efficient to handle the massive and high-frequency transactions
in JCCE than the original PoW. The remainder of the paper is
structured as follows: Section II introduces the related work;
The design of PoPF is presented in Section III; Section IV
shows the simulation experiments and analyzes the result; The
discussion is presented in Section V and Section VI concludes
this paper.

II.� RELATED WORK
As shown in Fig. 1, JCLedger is a distributed ledger based

on BlockChain. BlockChain was first proposed in 2008 and
was implemented as Bitcoin in 2009 [5]. The BlockChain is
essentially an append-only data structure maintained by a set of
nodes which do not fully trust each other. Nodes in the
BlockChain agree on an ordered set of blocks which contains
multiple transactions [6], [7], [8]. A complicated but secure
mechanism based on asymmetric cryptography such as ECC or
RSA has been implemented to protect BlockChain from
tampering in distributed systems [9]. BlockChain allows
transactions to take place in a cloud computing scene without
the need of a central intermediary. As a result, BlockChains
can significantly save the cost and improve the efficiency of
value exchange in JCCE.

Broadcast the
transactions to

the whole
network

Choose an
accountantAll kinds of

transactions Generate the
latest block

Hash of block i-1

Timestamp Nonce

Accountant signature

Transactions

block i

Hash of
block i-2

block i-1

……

The first
block

block 1

……

Hash of
block 1

block 2

……

Hash of
block i-3

block i-2

……
……

Fig. 1. JCLEdger: An example of blockchain

204

2018 IEEE Symposium on Service-Oriented System Engineering

0-7695-6394-5/18/$31.00 ©2018 IEEE
DOI 10.1109/SOSE.2018.00034

One of the most important technologies for BlockChain is
the consensus algorithm. The main function of the consensus
algorithm is to select an accountant from all the users/nodes for
each block. The ledger/BlockChain is composed of blocks
packed by accountants. In JCCE, the participants include cloud
services brokers (CSB), cloud services customers (CSC), cloud
services providers (CSP), etc. The computing power of these
participants is extremely uneven. CSPs always have high-
performance servers while CSCs just have ordinary PC. PoW
consensus algorithm was introduced by Bitcoin. The original
PoW consensus algorithms don't only bring a waste of
computing power but also cause the unbalanced distribution of
the accounting right. The throughput of PoW is very slow.
Considering the massive and high-frequency transactions in
JCCE, the scalability of PoW should be developed to make it
efficient enough for JCLedger to achieve real-time
performance.

The Bitcoin system’s approach to consensus is called Proof
of Work. In PoW, each node is calculating solving a hash
puzzle which is a complicated computational process. All
participants have to calculate the hash value continuously by
using different nonces until the target is reached. The cost of
massive computing power is not the intention of the consensus
algorithm but a way to ensure that the accountant selection
cannot be predicted and manipulated by a few people. Of
course, we hope to find a way not wasting too much computing
power, but still meeting the security needs to select the
accountant. In Bitcoin, the size of each block is limited to 1MB,
the number of transactions processed per second is only about
4 (theoretically up to 7). The low transaction processing speed
and at least six confirmation security mechanism lead users to
wait at least one hour for a transaction to be confirmed.
Increasing the block size may solve the problem temporarily,
but it cannot be increased unlimited, which will bring security
risks [11]. Ethereum [12] also uses PoW as its consensus

algorithm, and it can only handle about 7 transactions per
second.

The consensus algorithm Proof of Stake is an energy-saving
alternative to PoW. Instead of demanding users to find a nonce
in an unlimited space, PoS requires people to prove the
ownership of the amount of currency because it is believed that
people with more coins would be less likely to attack the
network. It is just a trade-off between computing power waste
and centralization risk. PoS has already been achieved by
Peercoin [13] and NXT [14] with different ideas. Ethereum
will switch its consensus algorithm from PoW to PoS. DPoS
[15] is similar to POS but requires fewer nodes to validate the
block. The significant difference between PoS and DPoS is that
PoS is direct democratic while DPoS is representative
democratic. Stakeholders elect their delegates to generate and
validate a block [16]. DPoS is the backbone of Bitshares [17].

III.�DESIGN OF POPF
The name of the approach is called Proof of Participation

and Fees. We choose the accountant candidates for each block
according to the ranking which is determined by the users’
participation (the times to be an accountant) and fees (the fees
a user paid) in the previous transactions. The top n% ranking
users are the accountant candidates. They compete for the
right to packing the next block through solving the hash
puzzle, which is the same as the PoW mining in Bitcoin
system. However, the difference is that the mining difficulty
for each user is not the same, it’s easier for the higher-ranking
users to win the competition compared to those with lower-
ranking. In a word, the system sets different mining difficulty
for different users according to their participation and fees��
That’s why the algorithm is called PoPF. Fig. 2 shows the
usage of PoPF in JCLedger.

 Block i-2

Transactions

 Block i-1

Transactions

 Block i

Transactions

transaction

transaction

transactiontransaction

transaction

transaction
Broadcast transactions

The more stars, the more difficult to find
the nonce to be the accountant of the next
block. The difficulty of each miner is
calculated according to the previous
blocks.

Miner X finds the nonce of block i and
becomes the accountant of block i+1

Hash of (block i & nonce i)

Difficult of block i for miner X

nonce i
Accountant signature (miner X)

Transactions collected by miner X

miner X

JCLedger

Transactions collected

Block i+1

Fig. 2. The usage of PoPF in JCLedger.

A.� The Block-Structure
Since our PoPF algorithm needs a certain number of users

(e.g., the number of accountant candidates is set to n, then
PoPF needs at least n users) as a basic running condition, at the

beginning of JCLedger, we cannot run PoPF. We use the
original Bitcoin PoW as the initial consensus approach until the
operating condition for PoPF is satisfied. Each node will check
the PoPF operating conditions every time it adds a block.
When the number of users in the history blocks is greater than

205

the set threshold n, the nodes switch the consensus approach to
PoPF. As shown in Fig. 3, the block-structure is composed of

two parts, which are the PoW structure and PoPF structure.

Genesisblock

Nonce

Accountant
signature

Transactions
Hash of
block i-1

……

Hash of
block 1

……

Hash of
block i-2

……

Poof of Work

Hash of
block i

Nonce i

Accountant
signature

Transactions

block 1 block i+1block iblock i-1block 2

Hash of
block i +1

Nonce i+1

Accountant
signature

Transactions

block i+2

Hash of
block i +2

Nonce i+2

Accountant
signature

Transactions

block i+3

Poof of Participation & Fees

……

Fig. 3. The Block-Structure for PoPF.

The definition of elements in the structure for PoPF is
shown in TABLE I. We should notice that nonce i in PoW is
provided by accountant i, while in PoPF, it is provided by
accountant i+1. This is because in PoPF, the accountant is
selected first, then the accountant collects transaction to pack a
block.

TABLE I. � THE ELEMENTS’ DEFINITION FOR POPF

Element Name Explanation
Hash of

(block i & nonce i)
Block i represents the
 hash value of block i

Nonce i Nonce i is mined by the
accountant of block i+1

Accountant
signature

The signature of
accountant of block i+1

Difficulty of block i The difficulty for the accountant

Transactions Transactions collected
by the accountant

B.� Ranking and the mining difficulty
Definition of terms:

•� R(x): The ranking of user x;

•� F(x): The fees user x paid since the last time he was the
accountant;

•� M(x): The number of times for user x as an accountant;

•� D(x): The mining difficulty for user x.

The PoPF algorithm is shown in Fig. 4. If a node wants to
be an accountant, he must maintain all the historical data,
through which F(x) and M(x) can be easily calculated. Then
R(x) can be calculated by F(x) and M(x) using the following
formula:

R(x) = F(x)

M (x)+1 .

After getting R(x), we can set rules for calculating D(x). We
recommend that candidates in the same ranking area have the
same difficulty. The number of candidates in each ranking area
can be set according to the scale of users in the system (e.g.,
the top 10% candidates are in the same ranking area). The

simulation experiment part in this paper will analyze the
difference brought by the scale of the ranking area.

Poof of Participation & Fees

Participation Fees

Ranking calculated by
M(x) & F(x)

How many times to be the accountant How much fees gave out
since the last time became the accountant

Poof of Participation & Fees

() ()

M(x) F(x)

R(x)

D(x)

 10%~20% top 10% 20%~30%ranking area:
Fig. 4. The PoPF algorithm .

C.� How to compete
As described above, every user knows whether himself is

one of the accountant candidates by calculating his ranking
through the historical data of JCLedger. As an accountant
candidate, the user calculates his mining difficulty by his
ranking firstly and then begins to mine. The user keeps
searching for the nonce until a value is found that gives the
block's hash the required zero bits. When a miner finds a
nonce which makes the block’s hash value satisfy the difficulty,
he sends the nonce to the other accountant candidates to
declare that he will be the next accountant immediately. After
the other accountant candidates receive this nonce, they first
verify whether the nonce satisfies the difficulty of the sender
and then send confirmations back to the miner if the nonce is
correct. Algorithm 1 shows the detail of validating a nonce.
Only if the miner receives more than half of the accountant
candidates’ confirmations within a limited time will he be the
accountant of the next block. What if a user receives two or
more nonces from different accountant candidates at the same
time although the probability of this situation is very low? The
receiver can only choose one candidate to send the
confirmation to just as voting for a unique accountant. If none

206

of these accountant candidates receives the required number of
confirmations within the limited time, the competition of
finding the nonce will restart. To encourage the candidates, the
accountant will choose the first k candidates that send the
confirmation to share the transaction fees with. This
mechanism not only guarantees each block just has one
accountant, but also solves the problem of selfish mining,
which means there doesn’t exist forks that may lead to double
spending in the distributed ledger.

Algorithm 1 Validating a nonce
1:� begin
2:� while(true)
3:� mining(miner, block)
4:� if receive a nonce from miner x
5:� result = validate_nonce(nonce, block, miner x)
6:� if(result)
7:� stop mining and send confirmation to x
8:� break
9:� else
10:� Dump the nonce
11:� continue
12:� end if
13:� end if
14:� end while
15:� wait for the next block
16:� end

D.� Packing a block
There are three steps to pack a block for an accountant.

Firstly, verify the received transactions. There are two things to
verify which are the sender’s the account balance and the
signature. If a transaction is legal, the receiver will save it in
the cache and broadcast it to the whole network. If not, it is just
dumped. Secondly, sort the transactions by their receiving time
in the cache which have been verified before. Finally, pack the
transactions and his signature into a block and broadcast it to
the whole network. The first two steps can be done by every
user in the network, but the third step is only for the accountant.
What’s more, the number of transactions in a block is limited,
and the accountant must broadcast the block within a limited
time. Algorithm 2 shows the details of packing a block.

Algorithm 2 Packing a block
1:� begin
2:� while(true)
3:� mining(miner, block)
4:� if find a nonce before receive one
5:� broadcast (miner, block, nonce)
6:� if not receive enough confirmations in time T
7:� break
8:� collect the transactions and generate nextblock
9:� broadcast(miner, nonce, nextblock)
10:� add nextblock to the ledger
11:� break
12:� end if
13:� end while
14:� end

E.� Adding a block to the distribute ledger
When a user receives a block, he should verify whether the

block is legal. There are four items to check, which are the
signature of the accountant, the transactions in the block,
whether the number of transactions and the time is beyond the
limitation. If the block is legal, the user adds it to the
distributed ledger and set the accountant’s fees to zero and the
number of being an accountant for the accountant plus one.
Then the user will begin to join the next block’s competition. If
the block is illegal, the user dumps the block, and the
accountant will be punished (e.g., set a very high difficulty for
him for the next block). Then the user will restart to compete
for being the accountant. Algorithm 3 shows the details of
validating a block.

Algorithm 3 Validating a block
1:� begin
2:� // after receiving a nonce from miner x
3:� while(true)
4:� wait for the next block
5:� if receive the block in time T
6:� result=validate_blaock(block, nonce, miner x)
7:� if(result)
8:� add block to the ledger
9:� break
10:� else
11:� Dump the nonce and block from miner x
12:� break
13:� end if
14:� end if
15:� Dump the nonce from miner x
16:� end while
17:� restart mining
18:� end

IV.�SIMULATION EXPERIMENTS
We simulate the generation of 100 blocks in JCLedger. In

the simulation, there are 1000 nodes which have all the
historical data, and they send transactions to each other
randomly. The number of accountant candidates is set to 100,
which means only the top 100 users can join the competition
for accounting right in each block. But with the number of
transactions increasing, the ranking is dynamically changing.
The hash function we choose is SHA256. In the first simulation
experiment, we set the number of candidates in each ranking
area to 1, which means every candidate has a different
difficulty. In the second simulation experiment, the number of
candidates in each ranking area is set to 10, which means the
top 10 candidates have the same difficulty for mining just like
the situation in Fig. 4.

Fig. 5 and Fig.6 are the results of experiment 1. Fig. 5
shows the distribution of accountant among all the 1000 users.
Fig. 6 shows the accountants ranking. We can see that most of
the accountants are ranking top 1��

207

Fig. 5. The accountant id in simulation experiment 1.

Fig. 6. The accountant ranking in simulation experiment 1.

Fig. 7 and Fig. 8 are the results of experiment 2. Fig. 7
shows the distribution of accountant among all the 1000 users.
Fig. 7 shows the accountants ranking. We can see that most of
the accountants are ranking top 10.

Fig. 7. The accountant id in simulation experiment 2.

Fig. 8. The accountant ranking in simulation experiment 2.

According to the results, the distribution of accountants is
well-balanced, the unequal computing power of participants in
JointCloud is shielded. The ranking, which is determined by
the participation and fees, is the main factor for winning the
competition of accounting right. All the users who have enough
contribution in JCLedger will have the opportunities to be
accountants.

V.� DISCUSSION
Tamper a block. For tampering the block, the attackers

must hold more than 50% of the computing power in the
network. Although every node with full data is a verification
node, only n% of the users are the accountant candidates. What
if the attackers control half of the accountant candidates which
is much easier than holding 50% of the computing power in the
entire network? In this situation, the attacker can make any
candidate be the accountant, but the accountant can’t pack an
illegal block because he would be caught easily. So this kind of
attack can’t do any harm to JCLedger. What about the attacker
make more than half of the candidates vote for two or more
accountant candidates at the same time? No doubt there may
exist two or more accountants for one block. Because one can
only vote for one candidate, the attackers may be found out
easily, and we can punish them by removing them from the
accountant candidates and restart the competition.

Computing power. In PoPF, only the candidates can join
the competition for accounting right, which means not every
node using their computing power to solve the hash puzzle.
What’s more, because of the ranking-difficulty rule, the
difficulty of mining for the top-ranked candidates is very low,
so they can save much computing power. Compared to the
original PoW, PoPF is an energy-saving algorithm.

Throughput. Unlike PoW for Bitcoin, which can only
handle 7 transactions every second in theory, we first select the
accountant, then the chosen accountant packs a block in PoPF.
According to this mechanism, it achieves significantly higher
throughput than PoW, and the throughput of PoPF is only
limited by the processing speed of the individual nodes.

VI.�CONCLUSION
In the background of Economic Globalization, JointCloud

computing is a prospective research area. In this paper, we
study consensus algorithm of BlockChain in JointCloud
computing. This study has high theoretical value and essential
application prospects which can support the development of
JCLedger. We propose a PoW (Proof of Work) based
consensus algorithm called Proof of Participation and Fees
(PoPF) for JCLedger. Compared to PoW, PoPF can save much
computing power and handled transactions more efficiently
without bringing additional security risks. Our future work will
concentrate on the study of smart contract in BlockChain
which is an automatic agent that can make the trading in
JointCloud more intelligent.

ACKNOWLEDGMENT
This work is supported by The National Key Research and

Development Program of China (2016YFB1000100) and the

208

National Natural Science Foundation of China (61772030,
61502510).

REFERENCES
[1]� Gao S. Economic Globalization: Trends, Risks and Risk Prevention[J].

Cdp Background Papers, 2000.
[2]� Wang H, Shi P, Zhang Y. JointCloud: A Cross-Cloud Cooperation

Architecture for Integrated Internet Service Customization[C]// IEEE,
International Conference on Distributed Computing Systems. IEEE,
2017.

[3]� Shi P, Wang H, Yue X, et al. Corporation Architecture for Multiple
Cloud Service Providers in JointCloud Computing[C]// IEEE,
International Conference on Distributed Computing Systems Workshops.
IEEE, 2017:294-298.

[4]� Fu X, Wang H, Shi P, et al. JCLedger: A Blockchain Based Distributed
Ledger for JointCloud Computing[C]// IEEE, International Conference
on Distributed Computing Systems Workshops. IEEE, 2017:289-293.

[5]� Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf, (2008).

[6]� Dinh T T A, Liu R, Zhang M, et al. Untangling Blockchain: A Data
Processing View of Blockchain Systems[J]. 2017.

[7]� Zheng Z, Xie S, Dai H N, et al. Blockchain Challenges and
Opportunities: A Survey[J]. 2016.

[8]� Yuan Y, Wang F. Blockchain: The State of the Art and Future Trends [J].
Acta Automatica Sinica, 2016, 42(4):481-494.

[9]� Lee B, Lee J H. Blockchain-based secure firmware update for embedded
devices in an Internet of Things environment[J]. Journal of
Supercomputing, 2016, 73(3):1-16.

[10]� Gervais A, Karame G O, Glykantzis V, et al. On the Security and
Performance of Proof of Work Blockchains[C]// ACM Sigsac
Conference on Computer and Communications Security. ACM, 2016:3-
16.

[11]� Bitcoin block size limit controversy, 2016. Available
from:https://en.bitcoin.it/wiki/Block_size_limit_controversy.

[12]� G Wood. Ethereum: a secure decentralised generalised transaction
ledger. 2014.

[13]� Peercoin. Available from: https://peercoin.net/, visited Sep 2016.
[14]� NXT. Available from: http://nxtchina.org/, visited Nov 2016.
[15]� Larimer D. Delegated proof-of-stake white paper [Online], available:

http://www.bts.hk/dpos-baipishu.html, (2014)
[16]� Delegated Proof of Stake (DPOS) vs Proof of Work (POW) (2015).

http://bytemaster.github.io/bitshares/2015/01/04/Delegated-Proof-of-
Stake-vs-Proof-of-Work/

[17]� Daniel Larimer, Charles Hoskinson,Stan Larimer. A Peer to Peer
Polymorphic Digital Asset Exchange. 2013.

.

209

