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ABSTRACT A smart contract is an agreement between two or more parties, which is executed by the
computer code. The code does the execution without giving either party the ability to back out, so it ensures
the trustless execution. The smart contract is one of the most important features in blockchain applica-
tions, which implements trusted transactions without third parties. However, with the rapid development,
blockchain smart contracts have also exposed many security problems, and some attacks caused by contract
vulnerabilities have led to terrible losses. In order to better deal with such dilemma, making a comprehensive
survey about the security verification of blockchain smart contracts from major scientific databases is quite
indispensable. Even though the significance of studying security verification of blockchain smart contracts
is evident, it is really fresh yet. The major contributions of our survey work come from three aspects. First,
after retrieving all-sided research studies, we select 53 most related papers to show the state-of-the art of this
topic, where 20 papers focus on dealing with security assurance of blockchain smart contracts, and 33 papers
focus on the correctness verification of blockchain smart contracts. Second, we propose a taxonomy toward
the topic of security verification of blockchain smart contracts and discuss the pros and cons of each category
of related studies. Third, through in-depth analysis of these studies, we come to know that the correctness
verification of smart contracts based on the formal method has already become the more significant and
more effective method to validate whether a smart contract is credible and accurate. So, we further present
representative studies of formal verification of smart contracts in detail to demonstrate that using a formal
method to validate blockchain smart contracts must have a promising and meritorious future.

INDEX TERMS Blockchain, formal method, security verification, smart contract, survey.

I. INTRODUCTION
As for the dilemma of trust crisis, transactions involving
authentic third parties also have security risks or high costs.
Recently, as a decentralized distributed ledger, the blockchain
enables people to conduct secure and reliable transactions
in an untrustworthy environment, which has been rapidly
developed and widely deployed. Blockchain was born with
the advent of Bitcoin, but now the blockchain is not limited to
digital currency. It has significant achievements in economy,
politics, industry, and society.

In the ecosystem of blockchain, the smart contract has
become one of the most important features in practical
applications. The smart contract was proposed by cryptogra-
pher Szabo [1] in 1997. It is defined as a digital agreement
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promised by contract participants. That is, it is a piece of
code that can execute automatically on a computer. Due to
the related technology limitation at that time, the develop-
ment of smart contracts remained stagnant. But now the
blockchain technology provides a natural execution envi-
ronment for smart contracts which makes it popular again.
Smart contracts have applied in many scenarios such as
crowdfunding, voting, securities and medical research [2].
Themost common deployment platform for smart contracts is
Ethereum [3]. However, with the rapid development of smart
contracts, the number of attacks is also growing. In June 2016,
the DAO (the world’s largest crowdfunding project deployed
on the Ethereum) was attacked by hackers [4], causing more
than 3 million ETH separated from the DAO resources pool.
In September 2017, the security vulnerability appeared in the
Ethereummulti-signature wallet Parity, which had resulted in
more than 150,000 ETH (about $30 million) embezzlement.
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And in April 2018, the BEC attack caused about $900 mil-
lion stolen. Facing with such painful losses, how to ensure
the security and reliability of smart contracts has attracted
extensive attention.

The security and reliability of smart contracts include
two dimensions. One is to regard smart contract as a static
program that has not been put into use. The correctness
of the program is a prerequisite for ensuring the security
and reliability of the contract. The other one is the security
issues that may arise during the execution of the contract.
By considering these two dimensions in a comprehensive
way, the security and reliability of smart contracts can be
greatly improved. Therefore, we make an in-depth survey
about the research results related to security verification of
smart contracts in recent years, and analyze them from two
aspects, the security assurance and the correctness verifica-
tion. The major contributions of our survey work comes from
three aspects. First, we select 53 most related papers, and
make a synoptic overview. Second, we propose a detailed
taxonomy towards these aspects and discuss the pros and cons
of each category of related studies. Third, through in-depth
analysis, we find the formal method has already become a
more effective method to validate whether a smart contract is
credible and accurate, which has a promising and meritorious
future.

This paper is organized as follows. Section II presents
the preliminary about blockchain technology and smart
contracts. Section III gives a synoptic overview of the
related papers. Section IV describes the security assurance
of blockchain smart contracts. Section V discussed the cor-
rectness verification of blockchain smart contracts, where
the formal verification method is illustrated in detail. Then,
we conclude our work in the last section.

II. PRELIMINARIES
A. BLOCKCHAIN TECHNOLOGY
In 2008, Nakamoto [5] published a bitcoin white paper which
marks the birth of the blockchain. Blockchain can be under-
stood as a decentralized distributed ledger. It enables peer-
to-peer transactions in a distributed environment that does
not require mutual trust through hash, signature, consensus
algorithms, time stamps, and incentive policies. Blockchain
technology solves the problems of high cost, low efficiency,
and insecure data in third parties. Moreover it is considered
to be the fourth milestone in the history of human credit
evolution [6].

In the blockchain, each distributed node uses the Merkle
Tree structure to record the transactions that have occurred
and encapsulates the transaction data into a block. These
enormous transaction data constitutes the block body, while
the other block information, such as the Merkle Root Hash,
Time, and Nonce constitutes the block header. Blocks are
connected in Time order by storing the hash value (calcu-
lated by SHA256) of the parent block shown in Figure 1.
Based on such storage structure, if an attacker wants to

FIGURE 1. Block structure in blockchain system.

tamper with a transaction in a block, all blocks after the
block must be recalculated. So it is difficult for an attacker
to achieve such a powerful computing power to tamper the
information. By using the Proof-of-Work (PoW), Proof of
Stake (PoS), or other consensus mechanisms, blockchain
creates a trusted network, and all participants can collec-
tively maintain block information without trusting a sin-
gle node. Because of the decentralization, transparency and
non-tampering integration, blockchain is no longer only used
in Bitcoin. Blockchain technology proposes a solution to the
double-spending problem and the Byzantine general prob-
lem. But, in theory, when a person reaches 51% of the com-
puting power, he can still perform double spend attack, and as
theminers’ rewards decrease, the number of attacks continues
to increase. Although the probability of successful attack is
low, ETC, BCH and BTG have all suffered 51% of the power
attack, causing huge losses. So the security of the blockchain
requires more attention.

B. SMART CONTRACTS
Smart contract is a series of symbolic protocols that can
be executed by contract participants. In 1997, Szabo [7]
rewrote the smart contract publication as the ‘‘formalization
and security of public network relationships’’, which fur-
ther improved the theoretical basis of smart contracts and
the application of security protocols. However, smart con-
tracts were not well developed due to the lack of relevant
theoretical techniques and digital systems which support
programmable smart contracts at that time. This is mainly
reflected in three aspects. First, there are no digital assets that
can be directly manipulated. Using an auto-executed contract
to transfer the ‘‘assets’’ is the essence of a smart contract.
But direct manipulation of real-world property, stocks, and
other physical assets have become a major problem through
computers. Second, the limitation of computational law [8]
is a big problem. Computational law is an approach to auto-
mated legal reasoning focusing on semantically rich laws,
regulations, contract terms, and business rules in the context
of electronically-mediated actions. Traditional computational
law focuses on analyzing and describing laws to help peo-
ple understand and formulate real-life laws. However, the
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emergence of smart contracts requires that laws be converted
into executable code and achieving legal interaction between
the machines. Third, lacking of a credible environment is the
key point. For the auto-executed contract, the participants can
only see the results after the execution, but do not know the
intermediate process at all. However, there are several prop-
erties of the contract execution which need to be guaranteed,
including contract execution correctness, non-tampering, and
semantic equivalence of the contract with the participant
intentions. Therefore, in such an environment where theory
and technology are seriously scarce, the development of smart
contracts has been stagnant.

In recent years, the decentralized blockchain technol-
ogy has provided a trusted environment for smart contracts
that does not require third-party intervention. Coupled with
the rapid development of artificial intelligence, which has
greatly promoted the progress and improvement of com-
putational law, smart contracts have once again attracted
people’s attentions. Unfortunately, using vulnerabilities of
smart contracts to attack contracts themselves has gradually
increased. In 2018, Nikolic et al. [24] used the MAIAN
analysis tool to perform a security analysis of nearly 1 million
smart contracts, in 10 seconds per contract. Their analysis
flags that 34,200 smart contracts are vulnerable. For further
research, they randomly sampled 3,759 contracts in vulner-
able contracts, and found that 3,686 smart contracts had
a 89% probability of vulnerability. Therefore, the issue of
security verification of smart contracts deserves imperative
and comprehensive studies.

III. A SYNOPTIC OVERVIEW
To have a picture of the state-of-art of the security verification
of blockchain smart contracts, we make an in-depth survey.

First, we make an effective survey towards the research
about security verification of smart contracts. In our work,
we adapt the IEEE Xplore, ACM Digital Library, Elsevier
ScienceDirect, Spinger,Web of Sciences, Engineering Village
as major scientific databases. We use smart contract together
with security or verification as keywords. Until the end of
Dec. 2018, 258 papers were appeared as the search results.
According to the major contributions of these papers, a total
of 53 related papers are selected as most related studies.
Research papers that focused on the pure blockchain finance
and blockchain law are not considered in our work. The
amounts of related publications in recent years presented
in Figure 2.

Second, we analyze all papers, and find two key points
are shown obviously. On one hand, the topic of security
verification of blockchain smart contracts is really fresh
because the total number of papers is still small. While on the
other hand, the research contributions of security verification
of blockchain smart contracts have increased year by year,
which means this research topic is imperative and promising.
We propose a taxonomy towards the topic of security verifi-
cation of blockchain smart contracts.

FIGURE 2. Amounts of related publications in recent years.

1) The aspect of security assurance of smart contracts in
blockchain covered by 20 papers is classified into three
categories, including environment security, vulnerabil-
ity scanning, and performance impacts.

2) The aspect of the correctness verification of smart con-
tracts covered by 33 papers is classified into two cate-
gories, including programming correctness and formal
verification.

The classifications and major contributions of each paper is
presented in Table 1.

IV. SECURITY ASSURANCE OF SMART CONTRACTS
With the rapid development of blockchain technology, smart
contracts of great variety and diversity are flooding the mar-
ket. How to maintain the safe and efficient execution of
smart contracts has become a common pursuit. In this section,
we discuss how to maintain the security of smart contracts
from the aspects of the environment security, vulnerability
scanning, and the performance impacts. Then, we discuss the
pros and cons of each category of related studies.

A. ENVIRONMENT SECURITY
The correct execution of smart contracts requires a secure and
reliable environment. In this section, we introduce the impact
of environment security on smart contracts from two aspects:
blockchain security and secure data source. The blockchain
security provides a secure execution environment. The secure
data source provides the credible data to ensure the secure
execution. Below we discuss these two aspects in detail.

1) BLOCKCHAIN SECURITY
Several studies summarized common problems in blockchain
security and depicted a macro blueprint for building a
secure and reliable execution environment. Alharby and
Moorsel [10] pointed out that the common risks in the
blockchain including 51% of computing power, private key
protection, criminal activities, double payment, and trans-
action information disclosure, etc. By analyzing the causes
of the problems they provided some existing solutions.
Li et al. [11] studied the execution process of smart contracts
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TABLE 1. The classifications and major contributions of related papers.

in the blockchain, and proposed two issues of transaction
order dependency and timestamp dependency. The trans-
action was not executed in the correct order or the miner
maliciously modified the block timestampmay affect the cor-
rectness of the smart contract. Simultaneously they suggested
that using the OYENTE tool to detect smart contracts was a
perfect solution.

2) SECURE DATA SOURCE
Smart contracts usually need to interact with external data
sources, but they often fail to get external data over HTTPS.
Therefore, Zhang et al. [12] introduced Town Crier (TC) to
connect HTTPS data sources with smart contracts, which

solved the problem of hindering the development of smart
contracts due to the lack of trustworthy data feeds.

All the aspects above maintain a credible and secure envi-
ronment for the execution of the smart contract, which reduce
the possibility of successful external attacks.

B. VULNERABILITY SCANNING
Vulnerabilities caused by contract design defects can also
cause huge losses. Vulnerability scanning is the study of
vulnerabilities that have been discovered, which aimed at
avoiding the same mistakes. It can help us discover potential
vulnerabilities in the execution of contracts, which is impor-
tant to improve the security and credibility of contracts.
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To avoid the vulnerabilities, some studies systematically
summarized the contract vulnerabilities caused by negligent
design in recent years and analyzed the security risks in
the contract [9], [13]. For example, Atzei et al. [9] summed
up the contract vulnerabilities that have been discovered
into 12 categories, explaining the reasons for the vulnera-
bilities. At present, reentrancy (DAO attack event), access
control (Parity wallet stolen event), denial of services, bad
randomness have caused huge losses in the discovered vul-
nerabilities, so it is important to avoid the recurrence of the
vulnerability.

To solve the vulnerabilities, there are special solutions
and common solutions that have been proposed. Below we
discuss these two aspects.

1) THE SOLUTION FOR A SPECIFIC VULNERABILITY
Some studies have given different solutions to specific
vulnerabilities. Bissias et al. [14] proposed a mechanism
for recovering stolen assets for DAPP applications such
as DAO, which greatly reduced the losses caused by
attacks. Marcus et al. [15] proposed to eliminate some arti-
facts of Kademlia protocol, raising the threshold for
attackers. This countermeasure has been added to geth1.8
(a standalone client of Go Ethereum) to against eclipse
attacks. Liu et al. [16] proposed the ReGuard, a tool for
detecting reentrant vulnerabilities, which dynamically iden-
tified reentrant vulnerabilities in contracts through fuzzing
and automatically flaged reentrant errors generated. As the
same, Shelly et al. [19] proposed a notion of Effectively
Callback Free (ECF) objects, which dealt with the callback
bugs in contracts, such as reentrancy. Le et al. [17] ensured
the normal execution of the contract by calculating the exe-
cution model and statically proving the input conditions that
guaranteed the termination or non-termination of the contract.
Torres et al. [18] designed a framework to accurately find
integer bugs in Ethereum smart contracts called Osiris. They
evaluated the tool’s performance on a large experimental
dataset containing more than 1.2 million smart contracts,
which found that 42,108 contracts contain integer bugs.

2) THE SOLUTION FOR COMMON VULNERABILITIES
In addition, some other work gave the solutions to common
vulnerabilities. Bragagnolo et al. [20] proposed a SmartIn-
spect architecture based on decompilation capabilities encap-
sulated in mirrors. It obtained unstructured information in
the contract by decompiling the smart contract that had
been deployed, so that they could introspect the current
state of a smart contract instance. If any vulnerabilities were
found, it can modify them without redepoly [23]. Wohrer and
Zdun [27] proposed six security design patterns to reduce
the possibility of the vulnerabilities. Besides, many tools
had been designed to analyze the contracts, where the
Oyente tool had achieved significant results. It extracted
the control map from the EVM Bytecode of the con-
tract and found potential vulnerabilities in the contract by
executing the control map [21]. Similarly, there were also

other verification tools, such as SolMet [22], MAIAN [24],
ZEUS [25], Securify [26], Mythril [50], SmartDec [51], and
Solgraph [52]. The first five tools analyzed the EVM Byte-
code to check possible vulnerabilities during execution, and
the last two tools analyzed the code of the original contract to
find potential vulnerabilities.

Using vulnerability scanning method, we can more conve-
niently and comprehensively detect possible vulnerabilities in
contracts when they are executing. So vulnerability scanning
method is necessary for developing correct smart contracts.

C. PERFORMANCE IMPACTS
Performance can affect the security execution of smart con-
tract. Due to the miner mechanism of blockchain and the poor
Ethereum concurrency mechanism, the execution efficiency
of smart contracts is very low. Only 10 to 20 transactions
could be completed per second, leaving many complex finan-
cial transactions in the miners’ pool for a long time. Through
the analysis of Abdellatif and Brousmiche [67], we find that
the longer the smart contract resides in the miners’ pool, the
more likely it is to be attacked successfully. Therefore,
the performance impacts should be seriously considered.

Vukolic [28] argued that smart contracts which executed
sequentially limited the attributes of the blockchain (such as
confidentiality), so they proposed the idea of executing inde-
pendent smart contracts in parallel. ThenDickerson et al. [29]
proposed a new method of parallel execution of smart con-
tracts, in which miners scheduled transactions and allowed
non-conflicting contracts to execute in parallel. This method
performed well on smart contract benchmarks, greatly speed-
ing up contract execution efficiency.

D. DISCUSSION OF SECURITY ASSURANCE
RELATED STUDIES
We summarize the achievements and weaknesses of above
three aspects of related work as follows, which are used as
guidance or suggestions for future studies.
Category: Environment Security
Achievement
• Common risks in blockchain have been discovered.
• Town Crier (TC) ensures smart contracts with secure
data sources.

Weakness
• The solutions against risks in blockchain are still imma-
ture and lack of enough effectiveness.

Category: Vulnerability Scanning
Achievement
• We can learn lessons and avoid the same mistakes.
• A number of possible solutions to vulnerabilities are
proposed, which makes the smart contracts more secure.

Weakness
• Only known vulnerabilities can be analyzed and
unknown vulnerabilities cannot be discovered.

• The Vulnerability scanning is inefficient to analyze the
huge smart contracts.
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• Analysis is not comprehensive, it is easy to ignore some
vulnerabilities.

Category: Performance Impacts
Achievement
• The idea of executing smart contracts in parallel is
proposed together with some scheduling strategies for
parallel execution.

Weakness
• The parallel execution method is still immature and the
ethereum is still the most popular platform for smart
contracts.

Through above analysis, we find that better and more
meticulous solutions to conquer the security challenges of
smart contracts are urgently needed. Currently, research on
vulnerability scanning takes up the majority. Vulnerability
scanning can effectively reduce potential vulnerabilities in
contracts and ensure the secure execution of contracts. How-
ever, the vulnerability scanning tools are still immature, and
unknown vulnerabilities cannot be found. So the vulnerability
scanning technology needs further research.

V. CORRECTNESS VERIFICATION OF SMART CONTRACTS
In addition to security assurance, the correctness of the smart
contracts deserves more attentions. Since there is no uniform
programming specification for smart contracts and the lim-
itations of the programming language, a variety of contract
vulnerabilities have emerged, giving attackers opportunities
to take advantage of them. So, in this section, we discuss
how to write reliable smart contract from the following two
aspects, which include programming correctness and formal
verification.

A. PROGRAMMING CORRECTNESS
The essence of a smart contract is the computer code that can
be executed automatically on the computer, so programming
smart contract correctly is an important research direction.
After summarizing the papers in recent years, we find that
there are four ways of programming, including setting stan-
dards, developing new contract language, semantic analysis,
and software engineering tools, which ensure the correctness
of the contract.

1) SETTING STANDARDS
Setting standards is of great significance in regulating the
programming of contracts. In order to find out the rules of
programming, some studies focused on the large quantity
of experiments. Delmolino et al. [30] used a large number
of contracts to find common mistakes that were easy to
occur during the writing process, and presented programming
guidance to avoid these errors. Bartoletti and Pompianu [31]
extensively analyzed the smart contracts related to Bitcoin
and Ethereum applications, and provided a programming
model for writing the correct contract. While, the other
work started from the theory, they combined the knowledge
of computational law to design the semantic framework of

smart contracts [32], [33]. Through semantic transformation,
the solidity contract was generated and finally tested. In addi-
tion, Marino and Juels [34] proposed a standard for changing
and revoking contracts. Applying the framework to Ethereum
can make it easier to modify or cancel the released smart con-
tracts, which had great value in maintaining the correctness
of contracts.

2) DEVELOPING NEW CONTRACT LANGUAGE
Developing new contract language is an effective way towrite
the correct smart contract. A variety of programming lan-
guages such as Idris [35], Simplicity [36], Obsidian [39], and
Flint [37] have been proposed. These Type-based functional
languages make the development process safer. Through
the static analysis of smart contracts, we can more easily
find vulnerabilities in the writing process which reduces
the generation of contract errors and testing requirements.
In addition to the programming languages mentioned above,
Idelberger et al. [40] proposed a smart contract based on
logic language, pointing out a new idea. The complement of
logical language and programming language can make the
design of smart contracts clearer. Regnath and Steinhorst [38]
proposed a new programming language, SmaCoNat, which
was a human-readable, security, and executable language.
They converted programming language grammar into natural
language sentences, such as directly giving names to variables
instead of directly using memory addresses, which improved
program readability. At the same time, to improve the security
of the program, they reduced the possibility to repetitively
alias logic and data structures by custom names.

3) SEMANTIC ANALYSIS
Semantic analysis is another important way to analyze and
write a correct contract. Focused onmodifying the EVMenvi-
ronment, Hildenbrandt et al. [41] presented an executable
formal specification of the EVM’s Bytecode stack-based lan-
guage called KEVM. It provided amore security environment
for the development of the smart contracts, and made the
formal analysis of the smart contracts easier. They used the
official Ethereum test suite to verify the correctness and
performance of the KEVM, which all achieved better results.
Daejun et al. [42] also proposed a formal verification tool for
the EVM Bytecode, which adopted KEVM. Their verifica-
tion tool had been used to verify various high-profile smart
contracts including the ERC20, Ethereum Casper, and Dap-
pHub MakerDAO contracts. Focused on developing smart
contracts, Zhou et al. [43] designed a SASC static analysis
tool to generate a syntax topology map of the invocation
relationships in smart contracts and mark the locations where
risks and vulnerabilities may occur. Liu et al. [45] proposed
a novel semantic aware security auditing technique called
S-gram for Ethereum. They combined the N-gram language
to model the static semantic labeling, and predicted poten-
tial vulnerabilities by identifying irregular token sequences.
Mavridou and Laszka [46] introduced FSolidM, a framework
rooted in rigorous semantics for designing contracts as FSM.
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Also, they provided a tool to design the FSM model and
verify the correctness of the contracts conveniently. Focused
on the published smart contracts, Suiche [44] designed a
decompiler to analyze the syntax and decompile the EVM
binary code, so that the readable solidity code was generated.
Through static and dynamic analysis of the decompiled code,
vulnerabilities in contracts were discovered.

4) SOFTWARE ENGINEERING TOOLS
Software engineering tools provide well-accepted standards
for the development of smart contracts, which formal-
ized the process of writing the contract. Therefore, intro-
ducing the software engineering tools into the blockchain
is conducive to the development of correct contracts.
Porru et al. [47] proposed that designing specialized tools
for blockchain-oriented software development and improving
the testing activities would greatly facilitate the safe and
reliable execution of smart contracts. Destefanis et al. [48]
analyzed the Parity Wallet hack case, and found that the risks
were mainly caused by a negligent programming activity.
So they thought the blockchain oriented software engineer-
ing was necessary. Marchesi [49] listed several hacks suc-
cessfully performed on blockchain, such as MtGox in 2014
(350 million US$), Bitfinex in 2016 (72 million US$), and
Coincheck in 2017 (400 millionUS$). Through analysis, they
proposed that the application of software engineering tools
to blockchain software development might be crucial to the
success of this new field. In short, software engineering tools
can standardize the development process of smart contracts,
thus developing smart contracts more efficient, and avoiding
losses caused by negligence, such as batchoverflow.

All the methods mentioned above are useful for writing
correct contracts. They regard a smart contract as a simple
program and reduce the possible mistakes in the development
process by standardizing and analyzing the contracts, which
greatly improves the development efficiency of smart con-
tracts.

B. FORMAL VERIFICATION
Formal methods provides a powerful technology for the cor-
rectness verification of smart contracts. At present, the use
of formal methods to verify smart contracts has been widely
recognized, and significant results have been achieved in
practice. To solve the demands for high assurance contracts,
the Ethereum community has turned to formal methods as
well [70], [71].

Besides, using formal methods to validate smart contracts
can provide a rigorous mathematical model for the verifica-
tion of smart contracts. Through the analysis of the model,
we can more easily discover the logic errors or other new vul-
nerabilities. The formal verification of smart contracts tends
to be a great potential for development in the future [53], [54].

According to the research [53], we summarize the for-
mal verification framework for smart contracts shown in
FIGURE 3. The text agreement of a smart contract made
by contract participants needs to fully express the intention

FIGURE 3. Formal verification framework for blockchain smart contracts.

of the makers and comply with the law. Then, Implement-
ing formal specification and formal verification on above
established contract, which is an iterative process. Through
multiple behavioral modeling and attribute modeling of smart
contracts, we can validate whether the attributes meet the
contract requirement or not.

In our survey, we divide the formal verification method of
smart contracts into two categories. One is program-based
verification and the other one is behavior-based verification.
Program-based verification treats smart contracts as codes,
it translates the contract codes into formal languages and then
identifies vulnerabilities in contracts. This is a verification
method for static analysis programs. Behavior-based veri-
fication takes into account issues that may be encountered
during the execution of smart contracts, such as improper
operations and maliciously attacks. By constructing a formal
model, it finds out the weak position of the contract, which
is a way to dynamically analyze smart contracts. Below we
discuss these two aspects in detail.

1) PROGRAM-BASED FORMAL VERIFICATION
The essence of a smart contract is the program that is executed
on the blockchain. Verifying the correctness of the program
is a key part of ensuring the safety and reliability of smart
contracts.

There are both successful practical cases and theoretical
studies on program-based verification of smart contracts.
At the 3rd Global Blockchain Summit in 2017, a blockchain
formal verification team of the University of Electronic Sci-
ence and Technology presented the VaaS (Verification as a
service) as a EOS formal verification platform. Except for the
EOS blockchain platform, VaaS also supports other common
platforms such as Ethereum and Fabric. The principle of
VaaS platform is to translate programs written in the Solidity
scripting language into the Coq code, thus establishing a
standard formal model for smart contracts, and then verify the
correctness of the smart contract by verifying the correctness
of the Coq language. Similarly, Bhargavan et al. [55] pro-
posed a verificationmethod based on programming language.
They translated the Solidity language into an F* language to
check if the contract was correct. In most cases we can only
get the binary code running on the Ethereum, and we cannot
get the source code of the smart contract. So in the absence
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of source code, they decompiled the binary files on Ethereum
into F* language [58], and analyzed whether at least some of
the attributes to be reached by the contract were satisfied. The
complete F* language for any smart contract had not yet been
implemented because of huge work. Moreover, for the same
contract, it was so hard to verify whether the F* language
translated by Solidity language consistented with the decom-
piled binary code. Furthermore, Grishchenko et al. [59] also
used the F* language proof assistant to successfully validate
the official Ethereum test suite.

Yang and Lei [60], [61] proposed a novel formal symbolic
process virtual machine (FSPVM) to verify the reliability and
security properties of smart contracts which based on Hoare
logic in Coq. It used an extensible formal intermediate pro-
gramming language Lolisa and the corresponding formally
verified interpreter of Lolisa. After verification, they found
that it supported the ERC20 standard and could solve the
problems in higher-order logic theorem proving.

Hirai [56] proposed a formal verification method based
on Ethereum Bytecode. In the process of translating one
language into another, there may be cases where the mean-
ing expressed in the translated language not be consis-
tent with that before translation. So he proposed using the
Isabelle/HOL to verify the binary Ethereum code. To illus-
trated his method, first, he obtained the binary instructions
of a small contract called ‘‘deed’’. Then he translated the list
of instructions into an AVL tree. Last, he analyzed the AVL
tree in a theorem proving environment with the Isabelle proof
assistant. This verification method is generic to all Ethereum
smart contracts. Amani et al. [57] also used the Isabelle proof
assistant to verify the binary Ethereum code. The principle
of the method is to organize the bytecode sequences into
linear code blocks and create a logic program, where each
block is processed as a set of instructions. Each part of the
verification is validated in a single trusted logical framework
from the perspective of bytecode. Grishchenko et al. [63]
focused on the EtherTrust [62], a framework for the static
analysis of Ethereum smart contracts. It also analyzed the
EVM Bytecode of the contracts statically together with a
proof of soundness.

2) BEHAVIOR-BASED FORMAL VERIFICATION
Model checking is well adopt in behavior-based verification.
It can conveniently model the interaction between the user
and the program to verify whether the smart contract can
interact with the user in a reliable and secure way. Some good
examples of behavior-based formal validation are demon-
strated as follows.

Ellul and Pace [64] proposed a runtime verification
method. It was a novel state-based technique which ensured
that the violating party provided insurance for correct behav-
ior. They used the finite state machine to model the contracts,
and this method had been partially implemented in a proof-
of-concept tool ContractLarva. Their method refered to the
methods proposed by Fenech et al. [68] and Gorin et al. [69],
which validated the properties of the contract.

Then, Bigi et al. [65] combined game theory with for-
mal methods and proposed a probabilistic formal model to
verify smart contracts. They first analyzed the logic of the
smart contract through game theory, then constructed a prob-
abilistic formal model for the contract, and finally used the
PRISM tool to verify the model. It was published in the
early research stage of blockchain smart contracts, ensuring
the safety and reliability of smart contracts through rigorous
mathematical proofs. Similarly, Bai et al. [66] also proposed
a model checking method. They used the Promela language
to model a shopping contract and used the SPIN tool to verify
whether the logic of the shopping contract was correct. These
two papers validates from the perspective of user-program
interaction behavior to determine whether the attributes are
satisfied or not.

In addition to the above method, Abdellatif and
Brousmiche [67] proposed a new verification method
in 2018, which not only considered the interaction between
users and programs, but also considered the interaction
between programs and the environment, further advancing
the development of using formal methods to verify smart
contracts. They used the BIP (Behavior Interaction Priori-
ties) framework to model components for smart contracts,
blockchain, users, miners, trading pools, and attackers. Each
component in the model was similar to an automatic state
machine, which interacted through ports to enable dynamic
interaction. Then they used the Statistical Model Check-
ing (SMC) tool to verify whether the model satisfies a certain
attribute. Specifically, the expected properties of the smart
contract were described using the PB-LTL (Probabilistic
Bounded Linear Time Logic) formula, which utilized prob-
ability to indicate the degree to which the model satisfied
an attribute. This method simulated the whole process of
smart contract execution (from being mined by miners to
completing contracts) and modeled the attack’s behavior.
They found that attackers were the most likely to succeed
in the process of interacting with the program, and that
the likelihood of a successful attack would be significantly
increased when the transaction was too long in the pending
transaction pool.

C. DISCUSSION OF CORRECTNESS VERIFICATION
RELATED STUDIES
We summarize the achievements and weaknesses of above
three aspects of related work as follows, which are used as
guidance or suggestions for future studies.
Category: Programming Correctness
Achievement
• Improving the accuracy of smart contract programs.
• Certain analytical tools improve the development effi-
ciency of smart contracts, such as SASC.

• Traditional Software engineering tools are introduced
which take instructive effects.

Weakness
• We do not have unified and authoritative programming
framework for smart contracts.
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• Newly developed languages have vulnerabilities and
have not been put into practice.

• The converted smart contracts may differ from original
smart contracts.

• Designing and implementing systematic smart contracts
still require adaptive software engineering technologies.

Category: Formal Verification
Achievement
• We can use mathematical methods to model and rigor-
ously verify the correctness of smart contracts.

• It can both statically analyze the logical structure of the
contract and dynamically verify whether the contract is
executed correctly.

• We could discover unknown vulnerabilities.
Weakness
• It is difficult to accurately model the smart contracts to
be verified.

• Model checking or theorem proving technologies that
consider user’s behaviors are still in the infancy stage.

From the above analysis, we find that there are a lot of
researches related to the correctness of smart contracts, which
have achieved pretty good results. Furthermore, we come
to know that the correctness verification of smart contracts
based on formal method has already become the indispens-
able method to validate whether a smart contract is credible
and accurate.

VI. CONCLUSION
As one of the most important features in blockchain systems,
smart contracts have attracted much attentions but also have
exposed many problems. The major contributions of our sur-
vey include three aspects.

First, we make a in-depth survey about the security
verification of blockchain smart contracts and selected
53 most related papers. To show the state-of-art of this topic,
we focused on two aspects, where 20 papers related to the
security assurance and 33 papers related to the correctness
verification.

Second, we propose a taxonomy towards such topic. More
specifically, the security assurance aspects is classified into
three categories, including environment security, vulnerabil-
ity scanning, and performance impacts. While the correctness
verification aspect is classified into two categories, including
programming correctness and formal verification.We discuss
the pros and cons of each category.

Third, through in-depth analysis of the related papers,
we summarize the research status and point out the further
research directions in smart contract security and correctness.
The main points are as follows:

1) According to the growth trend of related papers, we can
see that the security and correctness of smart contracts
are getting more and more attention. We urgently need
the more comprehensive methods to ensure the security
and correctness of smart contracts, thereby reducing
losses.

2) In the security of smart contracts, vulnerability scan-
ningmethod is currentlywidely used and have achieved
significant results. In future, we can continue to expand
research in this direction. For example: discovering
unknown vulnerabilities (try to infer whether there are
vulnerabilities that have identical or similar principles
to the known vulnerabilities) and optimizing vulnera-
bility detection method, which avoids repeating a lot
of vulnerability detection work and reduces errors or
omissions.

3) In the correctness of smart contracts, more work is
currently focused on programming correctness. For-
mulating the programming standards for smart con-
tracts, designing a set of smart contract development
processes, and improving the security awareness of
programmers are all the future research directions.

4) Although the amounts of papers related to program-
ming correctness is more, the growth trend of formal
verification method is more obvious. Formal verifica-
tion method is based on mathematical model and is
more rigorous and reliable. Therefore, using formal
verification method to verify smart contracts will be
the trend of future research. In future, we can con-
sider the following research directions: designing the
more complete formal verification tools, combining
formal verification methods with vulnerability analysis
methods to complement each other, and visualizing the
contract execution process using other formalmodeling
tools such as CPN (colored Petri Nets).
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