
Interactive Incontestable Signature for

Transactions Confirmation in Bitcoin Blockchain

Yan Zhu, Ruiqi Guo, Guohua Gan
School of Computer and Communication Engineering

Univerisity of Science and Technology Beijing, 100083

Email:yanzhu@ustb.edu.cn

Wei-Tek Tsai
School of Comp., Info. and Dec. Systems Engineering

Arizona State University, 85287

Email: wtsai@asu.edu

Abstract—Blockchain is a radical innovation that has a sig-
nificant impact on payments, stock exchanges, cybersecurity,
and computational law. However, it has significant limitations
regarding uncertainty for a transaction to be confirmed. This
paper proposes a new system for exact confirmation of transac-
tions in a block. Replacing original signature, a new Interactive
Incontestable Signature (IIS) scheme is used between dealer and
owner to confirm a transaction. By this signature, the dealer
can assure the owner that a transaction will be included into
blockchain in a non-repudiation way. The scheme is proved to
be secure for owner’s unforgeability and dealer’s incontestability.

Index Terms—Blockchain, Signature, Interactive Proof.

I. INTRODUCTION

Blockchain, as the core technology behind Bitcoin, has seen

widespread use recently. It provides a decentralized and con-

sistent mechanism, and promises to become an infrastructure

for various application fields, such as online payments, stock

exchange, cybersecurity and computational law. This technol-

ogy has been a primary focus of interest from many financial

institutions, e.g., venture capital invested in blockchain-related

companies has accelerated considerably over the past three

years and is on track to top $600 million in 2015 [1]. Currently,

the foundational layer and infrastructure necessary to support a

rich ecosystem of blockchain-based applications and services

is being established.
Despite its potential, blockchain faces many barriers as well.

At present, the major kind of faults produced in blockchain is

block conflict, which indicates that a fork in the blockchain can

occur if two blocks are published nearly simultaneously. The

current solution for conflict is based on “Longest Chain Rule”

(LCR) [2]: if you see multiple blocks, treat the longest chain

as legitimate. This means that node follows the protocol rule

that they will only try to extend the longest branch they know

about. This rule causes a few of transactions on the wrong side

of the fork to be delayed since they would be reorganized into

new blocks (called blockchain reorganization). It also faces

risks if double-spending attack is attempted. In the current

implementation, a new block is generated about every 10

minutes [2]. The uncertainty of whether an established block

is in the prevailing branch leads to a common rule that a given

transaction is not confirmed until it is at least 6 blocks deep

in the chain.
Though the conflict could be resolved, “instant confirma-

tion” is still hard to reach. The confirmation is a verification

process that offers a final proof after validating a certain

transaction. It is necessary, whenever a transaction is received,

to get confirmation from other nodes on the network that the

transaction is indeed valid. In Bitcoin, however, there is no

notion of “instant confirmation”, due to the following reasons:

• A transaction is implicitly confirmed through being in-

cluded into a block which is followed up by approximate

6 blocks (as described above). This process, taking at

least one hour, causes a high confirmation latency.

• Even after such a long wait, the transaction is not

confirmed in total finality (which means the transaction

is permanently included into the blockchain). In fact, it

just offers 99.9999% finality [3] after two hours as does

Bitcoin.

• To check whether a transaction has been validated, client

needs to search the most recent 6 blocks (6 additional

blocks for an implicit confirmation, also called confirmed

by 6 blocks) after he/she publishes this transaction one

hour later. This is a large computational overhead because

the search volume is about 24,000 transactions.

The search volume discussed above is computed by 24,000=

6×4,000 according to maximum of roughly 4,000 transactions

per block (the average transaction size is around 200-250 bytes

and the block size is at most 1MB in Bitcoin currently).

To conclude the above discussions, “instant confirmation”

is still a challenge for the current blockchain. The important

takeaway though is that there is no absolute notion of “perma-

nently included” and the blockchain simply uses a reasonably

safe policy of considering transactions confirmed when they

are included with very high probability. The confirmation time

is quite variable, taking from tens of minutes to over two hours,

and on average it will take about an hour.

Contribution. In this paper we address the problem of im-

plementing the instant confirmation with incontestability in

blockchain. Based on two basic assumptions, we propose

an interactive signature protocol to achieve our goal. This

protocol, replacing the original signature scheme of trans-

actions, is called Interactive Incontestable Signature (IIS),

and it works between dealer and owner to implement the

instant confirmation with incontestability. By this signature,

the dealer can assure the owner that a transaction will be

permanently included in the blockchain in a non-repudiation

2016 IEEE 40th Annual Computer Software and Applications Conference

0730-3157/16 $31.00 © 2016 IEEE

DOI 10.1109/COMPSAC.2016.142

443

way. In addition, this signature is short and easy-to-build in a

3-move simple way.

Our signature scheme is constructed on general bilinear

map group system. We also prove the security of scheme

under the unforgeability of owner and the incontestability of

dealer based on two extended computational bilinear Diffie-

Hellman assumptions, eCBDH1 and eCBDH2, respectively.

Our experimental results shown that the scheme has good

properties: short signature, high performance, and low key

storages.

Organization. The rest of this paper is organized as follows:

Section II presents our system model and requirements. Our

construction and security analysis of Interactive Incontestable

Signature (IIS) is presented in Section III. The performance

evaluation is shown in Section IV. Finally, the conclusion and

future extensions are discussed in Section V.

II. SYSTEM MODEL

A. Design Objectives

Our model addresses the problem of building a blockchain

with more exact confirmation and higher performance than

existing blockchain. In order to achieve instant confirmation,

it is required that each transaction will receive feedback from

the block generator after it passes the verification process, and

generators cannot deny their prior verification behavior at any

time. Exactly, our work focuses on the following properties:

• Confirmability: represents the ability that a transaction

will not face the risk of becoming invalid later, once it is

appended into a new block.

• Incontestability: refers to the ability to ensure that the

block generator (Dealer) cannot deny the prior behavior

after the transaction is included into block in blockchain.

B. Our System

Our system is built on the existed Bitcoin Blockchain with

some improvements. The improvements contain two aspects:

one is that the dealer in our system is designated before the

beginning of generating block and unique at the same time,

and another is that the situation of ”blockchain reorganization”

is not expected to happen once new block is generated.

In order to design such a system, there is a need to introduce

a new concept, called accounting cycle, into our system, which

indicates the time interval between two contiguous generated

blocks in blockchain. The accounting cycle corresponds to

two basic assumptions: (1) there is one single dealer in
each accounting cycle, and (2) block conflict won’t occur
in blockchain (no fork). Obviously, these two assumptions

fail in existing blockchain protocol in Bitcoin. However, some

work necessary to hold them has already been done. Eyal et

al. [4] proposed a blockchain protocol that includes two block

types: the key blocks for leader election and the microblocks

for transaction storage. In their approach, leader election

ensures that only one node will be elected as the dealer to

generate a block in each accounting cycle. As a result, it

further eliminates the possibility of fork problem.

Our system model is shown in Fig.1. In each accounting

cycle, a set of transaction owners (e.g., O1, · · · , On) transmit

their transactions to the designated dealer; then the dealer au-

thenticates the transactions’ owners and validates transactions

respectively before processing confirmed transactions into new

block. This new block complies with the blockchain structure

in Bitcoin, which includes hash pointer between blocks and

merkle tree among transactions.

Pre
Hash Witness

Merkle
Root

Block

H (H(A)|H(B)) H (H(C)|H(D))

H (A) H (B) H (C) H (D)

Tag
A

Tag Tag Tag
B C D

Transactions

Dealer

Interactive
Incontestable

Signature
(IIS)

Block BlockHash
pointer

Hash
pointer

O1 O2 O3 On

Fig. 1. Our System Model on Interactive Incontestable Signature (IIS).

In our system, we add a new part Witness, which stores

identifiable information of the dealer, into each block. Once

a transaction is confirmed, a proof of validation (Tag) will be

generated and attached to the transaction. Any nodes in the

network can validate this Tag with Witness published in the

block. Transaction with a valid Tag indicates that it is already

confirmed by the dealer, and it ensures the incontestability of

dealers by establishing relationship between valid transactions

handled by the dealer and identity of the dealer. We construct

an Interactive Incontestable Signature (IIS) scheme to create

such a relationship, and the formal definition of IIS is given

as follows:

Definition 1: (Interactive Incontestable Signature, IIS): An

Interactive Incontestable Signature (IIS) scheme consists of

a tuple of algorithms (Setup, OKeyGen, DKeyGen, WitGen,

Sign, Verify), as follows:

• Setup: This algorithm outputs a parameter as the master

public key.

• OKeyGen: For each owner, it outputs a owner’s public-

private key pair by himself, where the owner holds the

secret key but the public key is public.

• DKeyGen: This algorithm outputs a dealer’s public-

private key pair, and the manager appends the public key

into the master public key.

• WitGen: This algorithm generates a witness of a secret

number and outputs this witness.

• Sign: This is an interactive proof protocol for yielding

signature between the dealer and the owner for a certain

transaction, and they interactively generate a message-

signature pair and outputs this signature.

• Verify: This algorithm outputs 1 if it is a valid message-

signature pair, otherwise output 0.

444

Compared with the transitional signature, the above signa-

ture has several differences:

1) Either the owner or the dealer can generate the pub-

lic/secret key by himself for easy to use;

2) the process of generating signature is an interactive proof

process between two parties: dealer and owner;

3) the verification of signature requires two public keys of

both dealer and owner at the same time, which means

that this signature is permitted by both of them;

4) the witness is unique in each block and will be shared

in all transactions in this block, that sets up a strong

membership between all transactions and this block.

C. Security Requirements

In our system, there are three types of possible forgery

attacks as follows: (1) forge signatures by owners, (2) forge

signatures by dealers and (3) forge signatures by external at-

tackers. Note that in our system, the dealer need to authenticate

the owner of a certain transaction before they running IIS to

generate a signature. Therefore the unforgeability of external

attackers can be ensured by the process of authentication. We

therefore focus our security model on the other two security

requirements.

• Unforgeability of Owner. In this case, the owner of a

transaction may aim at skipping validation process to

forge a signature by himself/herself. This security re-

quires that the owner cannot produce any valid signature

even with unlimited computational resources.

• Incontestability of Dealer. This requirement guarantees

that the dealer cannot deny his/her signature once he/she

has generated this signature interactively with owners.

We expect that our signature is provably secure for the above

requirements. Moreover, this signature must have a small

impact on the original blockchain structure, as well as high

performance and easy-to-implementation.

III. OUR CONSTRUCTION

We set up our scheme using a bilinear map group system

which is obtained from general bilinear pairings. A bilinear

map group is a tuple S = (G,GT , p, e) where G,GT are cyclic

groups of the same order p. We say that the function e is a

computable bilinear map e : G × G → GT if for any g, h ∈
G, a, b ∈ Z

∗
q , then e(ga, hb) = e(g, h)ab. We now describe a

concrete IIS scheme in Fig. 3, which is based on a bilinear map

system S = (G,GT , p, e). In this scheme, the algorithm of

Sign including five steps is interactive proof process between

dealer and owner, that is shown in Fig. 2.

Based on bilinear map, the correctness of signature σi

generated interactively can be proved as follow:

e((pkd)
H(IDi), pki) · e(H(Ti), wit2)

= e((gd)H(IDi), gxi) · e(H(Ti), h
ad)

= e(gxidH(IDi), h) · e(H(Ti)
ad, h)

= e(gxidH(IDi) ·H(Ti)
ad, h) = e(σi, h)

Dealer Owner

2. Select a random
number r

1.

3.

4.
5. Calculate the signature

1. Use the secret a of
witness to compute T

Fig. 2. Signature Generating Protocol.

• Setup(1κ)→ mpk: This algorithm first generates the bilinear
group G,GT of prime order p. Let g be the generator of G.
It chooses a random h ∈ G and outputs mpk = (g, h).

• OKeyGen(mpk, ui) → (ski, pki): it selects a random ele-
ment xi ∈ Z

∗
p as ski and calculates pki = hxi .

• DKeyGen(mpk, dealerd)→ (ski, pki): For a certain dealer,
it selects a random element d ∈ Z

∗
p as skd and calculates

pkd = gd.

• WitGen(mpk, skd) → W : For a certain dealer, it ran-
domly picks a secret element a ∈ Z

∗
p. Then it calculates

wit1 = ga, wit2 = (ha)skd = had ∈ G and outputs
W = (wit1, wit2).

• Sign(D(a, skd)↔ O(ski))(mpk,W)→ σi: It takes as input
the master public key mpk and witness W , secret a, skd
possessed by the dealer and ski possessed by the owner. To
sign a transaction Ti, dealer and this owner carry out a two-
party protocol to calculate the signature, as follows:

1) The dealer calculates the hash value T = H(Ti)
a of

transaction Ti together with his secret a ∈ Z
∗
p, and then

transmits T to the owner.

2) The owner randomly selects a number r ∈ Z
∗
p,

3) The owner transmits σ′
i = (gxiH(IDi) ·T)r = (gxiH(IDi) ·

H(Ti)
a)r to the dealer, where IDi is the ID of Ti.

4) The dealer calculates σ′′
i = (σ′

i)
d with his private key skd

and transmits σ′′
i = (gxiH(IDi) ·H(Ti)

a)rd to the owner.

5) Finally, the owner removes the random r and obtains the
signature σi = (σ′′

i)
1/r = gxiH(IDi)d ·H(Ti)

ad. It outputs
a signature σi for Ti, where

σi = gxidH(IDi) ·H(Ti)
ad

• Verify(mpk, pki, pkd,W, (Ti, σi)) → {0, 1}: Given mpk,
the witness W and a message-signature pair (Ti, σi), this
algorithm checks the equation

e(σi, h) = e((pkd)
H(IDi), pki) · e(H(Ti), wit2)

Output 1 if it is holds. Otherwise output 0.

Fig. 3. The full construction of Interactive Incontestable Signature (IIS).

A. Integrating with Blockchain

While the construction of the previous section gives an

overview of our approach, we have yet to describe how

our scheme integrates with blockchain. The general overview

of our approach is straightforward. To initiate a trans-

action to Bob, Alice first constructs a transaction infor-

445

IN

OUT

Head

Value
Address pk_0

Value
Address pk_1

0

1

Tag

Validation
verify Witness

Pre-Hash
No: 1

signature

Pre-Hash
No: 0

signature

Head

Value
Address pk_1

0

1

Pre-Hash
No: 0

signature

Pre-Hash
No: 0

signature

Tag

Value
Address pk_0

In

Out

Fig. 4. How other nodes verify a certain transaction contained in block.

mation TA. TA contains pkB (generated by Bob running

OKeyGen(mpk, uB)), transaction content and a simple signa-

ture produced by Alice (only used between Alice and dealers

who generate the next block). Then she broadcasts TA to the

network.

To create a new block, the dealer runs WitGen(mpk, skd)
and stores witness W in the block for validation. The dealer

searches for all transactions collected in this accounting cycle

and verifies transaction content. Here, we take TA for example,

the dealer first authenticates Alice’s identity through its orig-

inal signature and checks whether TA is a valid transaction.

If these conditions hold and the referenced transaction is not

claimed as an input into a different transaction (avoid double-

spending), the dealer and Alice then run interactively the Sign

protocol to generate a new signature σA as a Tag, replacing

the original one.

When this block has been built, other nodes in the net-

work examine whether TA is a valid transaction by run-

ning Verify(mpk, pkA, pkd,W, (TA, σA)) algorithm. Fig. 4

illustrates this verification process in detail. They first get

Tag attached to TA, the witness stored in the block and

Alice’s pkA in the corresponding out field of the referenced

transaction which can be found through the hash chain. If

Verify(mpk, pkA, pkd,W, (TA, σA)) = 1 and the referenced

transaction is not claimed as an input into a different trans-

action, TA is regarded as valid and they continue to examine

other transactions in this block; otherwise, if verify algorithm

return 0 or the referenced transaction has been claimed, TA

is regarded invalid and they discard this block. Finally, if all

transactions pass this validation process, the network accepts

this block as valid and appends it to the blockchain.

B. Security Analysis

We now analyze the security of our construction. Consider-

ing that the unforgeability of external attackers is ensured by

the authentication process as we discussed above, we focus the

attention on two types of security properties (unforgeability of

owner and incontestability of dealer). We will analyze these

two properties as follows:

1) Unforgeability of Owner: At first, we define the unforge-

ability of owner based on the general security definition of

signature, as follows:

Definition 2: A signature scheme is (t, qO, qD, qH , ε)-secure a-
gainst the unforgeability of owner if any adversary A1 breaks our
scheme with a negligible probability ε, the advantage

AdvA1 = Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

V erify(mpk, pki, pkd,W, T ∗
i , σ

∗
i) = 1 :

Setup(1κ) = mpk;

{pki} ← A OKeyGen(mpk,ui)=(ski,pki)
1 ,

{pkd} ← A
DKeyGen(mpk,dealerj)=(skd,pkd)

1 ,
WitGen(mpk, skd) = W,

A1({pki}, {pkd},W) = (T ∗
i , σ

∗
i)

⎤
⎥⎥⎥⎥⎥⎥⎦
≤ ε,

for t time, qO and qD times queries for dealer and owner, and qH
times queries for the hash Oracle.

The unforgeability of owner of our proposed scheme is

based on extended Computational Bilinear Diffie-Hellman

(called eCBDH1) assumption, which is defined as follow:

Definition 3: (extended-CBDH1 Assumption) Given
G,H,Ga, Ha, Hb ∈ G for unknown a, b ∈ Z

∗
q , the eCBDH1

assumption states that it is computationally intractable to
compute the value of Gab.

Next, we prove that our scheme is unforgeability of owner

according to the following theorem:

Theorem 1: Let G be a (t′, ε′) group for Hiffie-Hellman of
order p. Then the signature scheme on G is (t, qO, qD, qH , ε)-
secure against the unforgeability of owner, where

t ≤ t′ − 2(log p)(qO + qD + qH), ε ≥ ε′

We assume an adversary A breaks our interactive signature

scheme. We will use A to construct a simulator B that breaks

two types of extended-Computational Bilinear Diffie-Hellman

problems which we will define later in this section. The proof

process is shown in Fig. 5.

eCBDH
Problem

Simulator B Adversary A

Interactive
signature
scheme

problem

result

Fig. 5. The diagram of proof process in Theorem 1.

Proof: Suppose there exists an PPT adversary A1 that

outputs a forged signature for the interactive signature scheme

with a non-negligible advantage ε. We can use the algorithm

A1 to construct a PPT algorithm B1 that can break the

eCBDH1 problem: for x, y ∈ Z
∗
q , given G,H,Gx, Hx, Hy ∈

G, compute Gxy ∈ G. Algorithm B1 is described as follows:

• Setup: Given an eCBDH1 problem (G,H,Gx, Hx, Hy ∈
G), the algorithm B1 runs the Setup to generate the msk,

and calculates mpk = (g = G, h = H).

446

• Learning: A1 can issue up to qO owner-key queries and

qD dealer-key queries. In response, B1 runs as follows:

– Owner-key queries. Given an owner’s index i, B1 choos-

es a random number λi ∈ Z
∗
p. Assuming that ski = yλi,

the public key is computed as pki = (Hy)λi . B1 sends

pki to A1.

– Dealer-key queries. Given an dealer’s index j, B1 choos-

es a random number ζj ∈ Z
∗
p. Assuming that skd = xζj ,

the public key is computed as pkd = (Gx)ζj . B1 sends

pkd to A1.

• Hash Query: A1 can query a Hash Oracle up to qH times

as H(Ti) = Gh(Ti), where there is a map: {0, 1}∗ → Z
∗
p

and h(Ti) ∈ Z
∗
p.

• Challenges: B1 runs the WitGen to generate W =
(wit1, wit2). It computes wit1 = ga = Ga, wit2 = had =
(Hx)a, and sends W to A1 as a challenge.

• Response: The adversary A1 calculates a message-signature

pair (T ∗
i , σ

∗
i) in a polynomial time, and then sends it to B1.

• Output: B1 checks whether it is a valid pair by examining

e(σ∗
i , h)

?
= e(pk

H(ID∗
i)/ζj

d , pk
1/λi

i) · e(H(T ∗
i), wit2).

If this equation holds, this means that σ∗
i is a valid signature.

And then B1 computes Gxy = (σ∗
i /(G

x)h(T
∗
i)a)1/H(ID∗

i)

and returns this value as the final result.

We now analyze the validate of the above construction as

follows: The last equation used to check the validity of forged

signature according to the equation:

e(pk
H(ID∗

i)/ζj
d , pk

1/λi

i) · e(H(T ∗
i), wit2)

= e((Gx)ζjH(ID∗
i)/ζj , (Hy)λi/λi) · e(Gh(T∗

i), (Hx)a)

= e(GxyH(ID∗
i)+h(T∗

i)xa, H).

Also, the above algorithm B1 is a probabilistic polynomial

time (PPT) algorithm only if the adversary A1 can return the

result within a polynomial time. This also means the PPT

algorithm B1 can solve the eCBDH1 problem with a non-

negligible probability. This contradicts the hypothesis that the

eCBDH1 problem is hard for any PPT algorithm. That is, the

advantage of any probabilistic polynomial time algorithm B1

in solving the the eCBDH1 is negligibly small.

AdveCBDH1

B1
= Pr[B1(G,H,Gx, Hx, Hy) = Gxy]

= Pr

[
V erify(mpk, pki, pkd,W, T ∗

i , σ
∗
i) = 1 :

A1({pki}, {pkd},W) = (T ∗
i , σ

∗
i)

]
≤ ε.

The algorithm B1’s running time includes the running time

of forgery. The additional overhead imposed by B1 is dom-

inated by the need to evaluate group exponentiation for each

signature, key request and hash request. Any one such such

exponentiation may be computed by using at most 2 log p
group action [5], and thus at most 2 log p time units on G. B1

may need to answer as many as qO + qD + qH such requests,

so its overall running time is t′ ≤ t+2(log p)(qO+ qD+ qH).

2) Incontestability of Dealer: Similarly to the above defi-

nition, we also define the incontestability of dealer as follows:

Definition 4: A signature scheme is (t, qO, qD, qH , ε)-secure a-
gainst the incontestability of dealer if any adversary A2 breaks our
scheme with a negligible probability ε, the advantage

AdvA2 = Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

V erify(mpk, pki, pkd,W, T ∗
i , σ

∗
i) = 1 :

Setup(1κ) = mpk;

{ski, pki} ← A OKeyGen(mpk,ui)=(ski,pki)
2 ,

{pkd} ← A
DKeyGen(mpk,dealerj)=(skd,pkd)

2 ,
WitGen(mpk, skd) = W,

A2({ski, pki}, {pkd},W) = (T ∗
i , σ

∗
i)

⎤
⎥⎥⎥⎥⎥⎥⎦
≤ ε,

for t time, qO and qD times queries for dealer and owner, and qH
times queries for the hash Oracle.

Compared with Definition 2, it is easy to find a difference

that the adversary A2 holds some owner’s secret keys ski. This

means that any owner cannot forge the signature of dealer. The

incontestability of dealer of our proposed scheme is based on

extended Computational Bilinear Diffie-Hellman 2(eCBDH2)

assumption, which is defined as follow:

Definition 5: (extended-CBDH2 Assumption) Given
G,H,Ga, Gb, Hab ∈ G for unknown a, b ∈ Z

∗
q , the eCBDH2

assumption states that it is computationally intractable to
compute the value of Gab.

Based on this assumption, we prove our scheme is incon-

testability of dealer, as follows:

Theorem 2: Let G be a (t′, ε′) group for Hiffie-Hellman of
order p. Then the signature scheme on G is (t, qO, qD, qH , ε)-
secure against the unforgeability of dealer, where

t ≤ t′ − 2(log p)(qO + qD + qH), ε ≥ ε′

Proof: Suppose there exists an PPT adversary A2 that

outputs a forged signature for the above scheme with a non-

negligible advantage ε. We can use the algorithm A2 to

construct a PPT algorithm B2 that can break the CBDH2

problem: for x, y ∈ Z
∗
q , given G,H,Gx, Gy, Hxy ∈ G,

compute Gxy ∈ G. Algorithm B2 is described as follows:

• Setup: Given an eCBDH2 problem (G,H,Gx, Gy, Hxy ∈
G), the algorithm B2 runs the Setup to generate the msk,

and calculates mpk = (g = G, h = H).
• Learning: A2 can issue up to qO owner-key queries and

qD dealer-key queries. In response, B2 runs as follows:

– Owner-key queries. Given an owner’s index i, B2 runs

the OKeyGen to generate (ski = xi, pki = Hxi) for

any a xi, and sends (ski, pki) to A2.

– Dealer-key queries. Given an dealer’s index j, B2 choos-

es a random number ζj ∈ Z
∗
p. Assuming that skd = yζj ,

the public key is computed as pkd = (Gy)ζj . B2 sends

pkd to A2.

• Hash Query: A2 can query a Hash Oracle up to qH times

as H(Ti) = Gh(Ti), where there is a map: {0, 1}∗ → Z
∗
p

and h(Ti) ∈ Z
∗
p.

• Challenges: Assuming that a = x, B2 computes wit1 =
ga = Gx, wit2 = had = Hxy . Let W = (wit1, wit2) and

sends W to A2 as a challenge.

447

• Response: The adversary A2 calculates a message-signature

pair (T ∗
i , σ

∗
i) in a polynomial time, and then sends it to B2.

• Output: B2 checks whether it is a valid pair by examining

e(σ∗
i , h)

?
= e(pk

H(ID∗
i)/ζj

d , pki) · e(H(T ∗
i), wit2)

This equation used to check the validity of forged signature

holds as:

e(pk
H(ID∗

i)/ζj
d , pki) · e(H(T ∗

i), wit2)

= e((Gy)ζjH(ID∗
i)/ζj , Hxi) · e(Gh(T∗

i), Hxy)

= e(GyH(ID∗
i)xi+h(T∗

i)xy, H)

If σ∗
i is a valid signature, B2 computes Gxy =

(σ∗
i /(G

y)H(ID∗
i)xi)1/h(T

∗
i) which means the PPT algo-

rithm B2 can solve the eCBDH2 problem with a non-

negligible probability. This contradicts the hypothesis that

the eCBDH2 problem is hard for any PPT algorithm.

That is, the advantage of any probabilistic polynomial time

algorithm B2 in solving the the eCBDH2 is negligibly small.

AdveCBDH2

B2
= Pr[B2(G,H,Gx, Gy, Hxy) = Gxy]

= Pr

[
V erify(mpk, pki, pkd,W, T ∗

i , σ
∗
i) = 1 :

A2({ski, pki}, {pkd},W) = (T ∗
i , σ

∗
i)

]
≤ ε.

The algorithm B2’s running time is similar to the above

analysis in unforgeability by owner and its overall running

time is same to t′ ≤ t+ 2(log p)(qO + qD + qH).

IV. PERFORMANCE EVALUATION

A. Performance Analysis

Our interactive signature scheme is constructed on bilinear

map system from elliptic curve pairings. For simplification,

we give several notations to denote the time for various

operations in our signature scheme. E(G) is used to de-

note the exponentiation in G and B to denote the pairing

e : G×G→ GT . We neglect the operations on Z
∗
p, the hash

function H : {0, 1}∗ → G and the multiplication in G and GT ,

since they are much efficient than exponentiation and pairing

operation. We analyze the computation and communication

complexity for each phase, where lZ∗
p
, lG denote the length of

elements in Z
∗
p and G respectively.

TABLE I
COMPLEXITY ANALYSIS OF OUR SCHEME

Computation Complexity

OKeyGen 1 · E(G)
DKeyGen 1 · E(G)
WitGen 3 · E(G)
SigGen Dealer: 2 · E(G) | Owner: 4 · E(G)
Verify 1 · E(G) + 3 ·B

In Tables I and II, we analyze the performance of our

interactive signature scheme from two aspects: computation

and communication/storage costs. Note that in Table I, there

is no exponentiation and pairing operations in the setup phase,

we thus do not list this algorithm here. In Table II, we use sk
to denote ski and skd since both of them has the same element

length. Similarly, we use pk to denote pki and pkd.

TABLE II
COMMUNICATION/STORAGE ANALYSIS OF OUR SCHEME

Communication/Storage Complexity

Master public key (msk) 2 · lG
Private key (sk) 1 · lZ∗

p

Public key (pk) 1 · lG
Witness (W) 2 · lG

Signature (σ) 1 · lG

B. Performance Evaluation
We report experimental results to demonstrate the perfor-

mance of the interactive signature scheme. We build a simple

demo program simulating the interactive process between two

participants. This demo is implemented in Java and built

upon the Java Pairing Based Cryptography Library (JPBC)

cryptographic library. In table III the detail data are listed for

the above experiments. We use type A elliptic curve parameter

to generate bilinear pairing. In type A pairing, let lq be the

length of some prime q, lr be the length of the order r,

where r is some prime factor of q + 1. We imply five elliptic

curves parameters in the experiments, in which each of lq, lr
has different value: a 160 (lq=512, lr=160), a 200 (lq=640,

l r=200), a 240 (lq=768, lr=240), a 280 (lq=896, lr=280) and

a 320 (lq=1024, lr=320).

TABLE III
COMPUTATIONAL COSTS FOR DIFFERENT ELLIPTIC CURVE TYPE

Type Setup OKeyGen WitGen SigGen Verify

a 160 0.01324 0.02538 0.07569 0.15141 0.11066
a 200 0.02335 0.04598 0.13500 0.27503 0.20850
a 240 0.03725 0.07072 0.28572 0.47010 0.32450
a 280 0.06605 0.10510 0.32277 0.64518 0.48799
a 320 0.07756 0.14998 0.44662 0.91350 0.71197

V. CONCLUSION

In this paper, we present a new system model in blockchain

for implementing “Instant Confirmation with Incontestability”.

As the core of our system, a signature scheme IIS is proposed

and implemented to ensure transactions get dealer’s confirma-

tion incontestability. We integrate our scheme into blockchain,

analyze the security of it and evaluate its performance.

ACKNOWLEDGMENT

This work is supported by the National 973 Program (Grand

No. 2013CB329601) and the National Natural Science Foun-

dation of China (Grant No. 61472032).

REFERENCES

[1] Spencer Bogart and Kerry Rice. The blockchain report: Welcome to the
internet of value, 2015.

[2] Ghassan O Karame, Elli Androulaki, and Srdjan Capkun. Double-
spending fast payments in bitcoin. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 906–917.
ACM, 2012.

[3] Kaylash Chaudhary, Ansgar Fehnker, Jaco van de Pol, and Mariëlle
Stoelinga. Modeling and verification of the bitcoin protocol. In
Proceedings Workshop on Models for Formal Analysis of Real Systems,
MARS 2015, Suva, Fiji, November 23, 2015., pages 46–60, 2015.

[4] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse.
Bitcoin-ng: A scalable blockchain protocol. CoRR, abs/1510.02037, 2015.

[5] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the
weil pairing. In Advances in Cryptology – ASIACRYPT 2001, pages 514–
532. Springer, 2001.

448

