
7

978-1-7281-5566-1/20/$31.00 ©2020 IEEE

Highly-Distributed Systems Based on Micro-Services
and their Construction Paradigms

Andriy Luntovskyy

BA Dresden University of Coop. Education
Saxon Study Academy

Dresden, Germany
Andriy.Luntovskyy@ba-dresden.de

Bohdan Shubyn
Institute of Telecommunications and Radioelectronics,

Lviv Polytechnic National University
Lviv, Ukraine

boshubin@gmail.com

Abstract—A definition for the HDS, as well as the demarcation
to conventional distributed systems, were given. Typical
architectures for HDS were discussed which affect increasing of
QoS and of so-called QoE (Quality of Experience). The
distinguishing features for HDS are clearly formulated. The
advanced SWT (Software Technologies) approaches lead to use
of young flexible service-oriented architectures like Micro-
Services, which provide higher performance and small latencies,
as well as better scalability, energy-efficiency and autarky.

One possible option in the frame of HDS regarding security,
privacy, authentication and compulsoriness of workflow steps,
modules and service execution for such apps Blockchain and
Smart Contracting are. The theoretical issues are proven via the
represented examples and case studies.

Key Words — Highly-Distributed Systems, Agile Process
Models, Quality of Experience, Service-Oriented Architectures,
Micro-Services, DevOps, Scrum, Conway’s Law, Blockchain.

I. MOTIVATION

The main aim of the work is creation of so-called HDS
(Highly-Distributed Systems), which are energy-efficient and
cryptographically secured (SAML – Security Assertion Mark-
up Language, firewalls, IDS/ IPS – Intrusion Detection
/Prevention Systems), provide up-to-date QoS parameters
(higher DR and availability, small latency) and support
extended QoE (Quality of Experience) [6,7].The HDS have to
possess flexible structures based on SOA and Micro-Services,
as well as deploy efficient communication models (P2P, cloud-
fog), which are able to solve the distribution conflicts in short
time and support rapid access to the data analytics. Such HDS
are often developed under use of advanced SWT (Software
Technology) process models like DevOps and Scrum and are
driven via Blockchain-conform cryptographic structures
[7,8,11,12], which provide compulsoriness of required
workflow steps and predictable execution of the deployed
modules, services, Micro-Services and of other components
within the internal architecture of the above-mentioned HDS.

A. Distributed Systems

The term “Distributed Systems” has been used for many
years for applications, which operate in modern combined
wired-wireless-mobile networks under clear co-operation
goals, as well as have no centralization in memory access or
synchronization in the clocking. The distributed applications
are constructed on the sample n-tier and often possess

redundancy in form of server and database replications. They
follow to established SOA (service-oriented architecture)
concept and can be often organized as cloud-centric structures.
Significant architectural transformations in network services
and distributed systems characterize an ongoing trend
nowadays [1,2,7-10]. The clouds, clusters with explicit
cooperation goal (e.g. parallelized computing) as well as grids
belong to the above-mentioned systems.

B. Highly-Distributed Systems

Since 2005 the P2P systems (Internet of Things, fog) in
combination with convenient C-S communication model as
well as server-less structures (SLMA, robotics) have gained on
popularity. After that, Cloud-based solutions became a trend
(2011) under predominant use of the load-balanced “thin
clients” with functionality delegation to the clouds [7,8,11,12].
Under use of fog computing the IoT solutions are constructed.
The workload is shifted on the edge to the energy autarky and
resource economizing small nodes. Finally, what does “Highly-
Distributed Systems” mean?

The term “Highly-Distributed Systems” (HDS) must be
deployed for the new mobile, frequently “quasi-offline” or
server-less apps (SLMA), which extend the convenient
distributed systems. They understand the use of efficient and
performing networks under clear co-operation goals, as well as
no centralization in memory access or synchronization in the
clocking. Additionally, they possess more redundancy and
possibility for replications due to use of flexible P2P structures,
use of cloud and fog services. Energy autarky plays a very
important role for HDS. Highly-Distributed Systems have more
strata and layers in their architecture (better modularity and
management with efficient conflict resolving) and are also
more secured, especially for privacy and anonymity. For the
development of such systems, the agile SWT methods and
process models must be used [1,2].

The distinguishing features of HDS are as follows (Fig.
1):Advanced communication models (C-S with Clouds, Fog,
P2P, M2M); Advanced methods for performance management
and optimization as well as for QoE (Quality of Experience)
increasing; Advanced SWT (agile approaches like XP,
DevOps, Kanban, Scrum and so-called Micro-Services);
Advanced Data Analytics regarding to solving of “Big Data”
shortcomings. Therefore, the given paper possesses the

20
20

 IE
EE

 1
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
dv

an
ce

d
Tr

en
ds

 in
 R

ad
io

el
ec

tro
ni

cs
, T

el
ec

om
m

un
ic

at
io

ns
 a

nd
 C

om
pu

te
r E

ng
in

ee
rin

g
(T

C
SE

T)
 9

78
-1

-7
28

1-
55

66
-1

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 1
0.

11
09

/T
C

SE
T4

91
22

.2
02

0.
23

53
78

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 02,2020 at 05:15:49 UTC from IEEE Xplore. Restrictions apply.

8

February 25-29, 2020 TCSET-2020 Lviv-Slavske, Ukraine

following structure: 1) Section I contains the motivation and
discusses the demarcation of convenient distribution systems to
the so-called HDS; 2) Section II discusses advanced
communication models for HDS; 3) Section III provides the
up-to-date methods for performance management and
optimization as well as defines clearly the important term of
QoE (Quality of Experience); 4) Section IV contains an
overview of the influence of the actual SWT processes model
like DevOps and Scrum to the use of Micro-Services in HDS.
Big Data problematic regarding HDS and advanced data
analytics are discussed in Section V. Section VI provides an
analysis for suitable deployment of Micro-Services in HDS
aimed to increasing of flexibility and efficiency of the
applications. Section VII offers the case studies with some
proven use examples with inset of the appropriate protocols
(e.g. REST, WebSockets, AMQP); 5) An important option for
HDS is the deployment of Blockchain-conform structures
[3,4,7] due to necessity of compulsoriness of the services and
workflows for HDS; 6) Conclusions and the Outlook are given
in Sections VIII and IX.

Fig. 1. To the motivation on HDS

II. ADVANCED COMMUNICATION MODELS

This Section discusses the communication models for HDS
like C-S, P2P, M2M as well as their efficient combinations
aimed to flexible data and message exchange between the
advanced architectural components under considering of
performance (data rates, latencies), security and privacy and
energy factors.

There are three main types of communications models,
which are widely deployed in HDS: Client-server (C-S)
communication model, Peer-to-peer (P2P) communication
model, Machine-to-Machine (M2M) communication model.

Machine-to-Machine (M2M) communication is a
communication model that involves one or more instances that
do not necessarily require human interaction or intervention in
the process of communication (Fig. 2). The applications are
used in automated and half-automated modes. The typical
scenarios are sensor networks, telemetry, IoT and robotics. The
main differences to C-S and P2P models (refer the previous
sections) are as follows: M2M applications generate short
“bursts” on periodic data packets (so-called short telegrams);
The communication is realized typically via asymmetric links;
M2M communications are established through uplink channels
(UL); Uplink traffic is bigger than downlink (DL) traffic (direct
channels from providers) [5].Usually, M2M traffic is machine
generated and does not require any human intervention: no
human-to-human (so-called H2H). The QoS requirements for

M2M communication model differ significantly from regular
applications such as in the mobility, delay tolerance on offline
and data volumes, on priorities. The automated M2M
applications have, furthermore, low power consumption and
significant requirements on security and privacy [3,4,7,9].

Fig. 2. M2M communication model

In opposite of conventional H2H apps based on C-S and
P2P, the serving M2M devices (M2MDs) accumulate and
transfer via uplinks the large volumes of sensor data to the
specified engineering and industry clouds. This modus
operandi can frequently lead to so-called “Big Data”
problematic (s. next sections).In frame of M2M model, let’s
consider a wireless sensor net (WSN), which consists of 30000
sensors. Each sensor can transfer a short telegram up to 100
Bits each minute, i.e. 60 times per hour and 1440 times daily.
Thereby:

 The survey for each sensor is conducted 60 times per hour:
6000 Bits/h;

 x 24h = 144000Bits/daily = 18kByte/daily for each
sensor;

 In general, an average sensor accumulates experimental
data for 3 years x 365 days ~ 1000 days;

 It means: 18 Mbyte for each of the sensors;

 The overall-data for the mentioned network:
18MBytes x 30000 sensors = 540GByte of raw data!

The above mentioned advanced communication model is
widely involved to new industries, marketing, event,
entertainment scenarios under lower operation expenditures
(OPEX) and under robust energy-efficiency. A large number of
communicating terminals is used (mobile, desktop) under
relatively small traffic per terminal (refer Fig.3). Frequently,
so-called “digital twins” for machines, automotive, plants are
considered which use M2M too [5].

III. ADVANCED METHODS FOR PERFORMANCE MANAGEMENT

AND OPTIMIZATION

This Section discusses the methods for performance
management and optimization, which are typical for so-called
HDS. Inter alia, the term QoE (Quality of Experience)
regarding to the HDS can be widely used. Under QoE (Quality
of Experience) we understand system performance using
subjective and objective measures of customer satisfaction. It
differs from quality of service (QoS), which assesses the
performance of hardware and software services delivered by a
vendor under the terms of a contract. The origins of the term

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 02,2020 at 05:15:49 UTC from IEEE Xplore. Restrictions apply.

9

February 25-29, 2020 TCSET-2020 Lviv-Slavske, Ukraine

went from 5G whitepapers in last years, which discuss the
advantages of IMT2020 from, e.g. LTE with typical QoS
requirements [6-10].

Nowadays, IT and electronics industries apply the QoE
principle more and more for wide spectra their businesses and
services. Because QoE depends on durable positive customer
experiences, the assessments are compiled from large user
group polls [8,11,12]. The most important criteria toQoE
assessment for fixed, wireless and mobile networks and
devices are as follows: 1) Durable QoS within the service
(covering) area as well as simultaneously on the edge of the
network; 2) Application criticality, for example, simple texting
versus audio/video is inacceptable; 3) Robust working
environment, stable handover and roaming, as well as inter-
operability (fixed or mobile).

Thus, in contrast to QoS, QoE not only depends on the
technical performance, but also on a wide range of other
factors, including content, application, user expectations and
goals, and context of use. Understanding QoE, thus demands
for a multi-disciplinary research approach that goes beyond the
network level. In particular, different applications have
different QoE requirements (also including different QoS-
dependencies), necessitating different QoE models, monitoring
and eventually, different QoE management approaches.

A. Performance Optimization. QoS Parameters

Modern networking uses widely management of QoS-
parameters aimed to Performance, Reliability and Scalability
optimization [8,11,12]. So-called IoT is based nowadays on
IPv6. This brings more freedom in addressing of immense
quantity of available devices: sensors pico-nets, Embedded,
Wearable, Cyber-PHY, robots, intelligent stuff etc. Huge as
well as heterogeneous data volumes (approx. 100PB to
100EByte) are acquired additionally causing “Big Data”
shortcomings [8,11,12]. The processing and upload- and
download-functionality for sensor pico-nets and robotics is
offered via Cloud and Fog systems in their cooperation. The
small intelligent nodes in IoT-scenarios communicate via
energy-autarky gateways with the capable server part. The
considered approaches are able to increase the performance,
reliability and scalability in desktop applications and IoT both.
Which further approaches can be applicable? Let’s discuss
how these affect the following QoS criteria like throughput,
response time, and probability of failure, availability, and
reliability? Table I represents the influence if the listed
approaches on the QoS parameters within an IoT system in
detail [11,12].Further performance optimization can be
reached via the analytics migration into the clouds. The cloud-
centric systems can discharge the energy-critical mobile nodes
[8,11,12].A good balance between C and S parts brings use of
fog systems. The sensors, robots, intelligent stuff as well as
further Cyber-PHY operate partially autonomously (SLMA –
server-less mobile apps). Such autarky is possible via energy-
efficient communication protocols and software (cp.
Automation ML, OPC UA, MQTT, AMQP). An explanation
of such important parameter like reliability, which is
expressed per average downtime and availability classes 1-7,
is given in [11,12].

B. Analytic Placement for the Performance and Scalability

The up-date highly-distributed apps (desktop as well as
mobile) are characterized via multi-layer horizontal and
vertical architecture. These layers can be as follows PHY world
and hardware; Software with interfaces (heterogeneous and
adaptive); Middleware components and web services; Analytic
blocks and mobile agents. The layers and tiers are combined
and balanced between client, cloud and fog part considering the
QoS parameters like performance (throughput, response time),
reliability (probability of failure, availability) and scalability
too. As appropriate examples, OPC UA (OPC Unified
Architecture) and programming framework, standardized by
IEC 62541-2015, as well as ROS (Robot OS) and
programming framework [11,12] can be considered. The IoT
and robotic applications can be classified into three following
groups: 1) Conventional IoT and robots; 2) Cloud-Centric IoT
and robots; 3) Distributed (Fog-Cloud-cooperating) robots.

Therefore, we are talking about replaceable and
customizable IoT and robotic algorithms in various fields of
application (industry, medicine, communication and
telecommunication, entertainment) which can acquire, then
process and retrieve voluminous heterogenic “Big Data” in the
given area [8,9,11,12]. The new approach is depicted in Fig. 3:
performance optimization is possible due to migration from
clouds to fogs.

a) Less performance for Analytics: servers, DB and clients
b) More performance for analytics: servers, DB and clients

Fig. 3. New Approach: Performance Optimization due to Migration in Clouds
and Fogs

Only the cloud-centric solution (2) and further distributed,
fog-cloud-cooperating solution (3) both are able to overcome
the discussed problems in full measure. The analytic blocks,
migration agents as well as further adaptive interfaces are
delegated to the clouds and, possibly, after pre-processing and
clustering backwards to the so-called “fog” under use of the
mentioned solutions and protocols. The virtual analytical
components (middleware, web services, and mobile software
agents) are placed in the cloud and fog environment. Virtual
cloud and fog solutions contain software components for the
robots that implement reboot-able (virtual) business processes

IV. ADVANCED SOFTWARE TECHNOLOGY FOR HDS

This Section investigates several advanced SWT (Software
Technology) methods and process models, which can optimize
the construction of modern HDS, increase their efficiency and
reduce the expenditures. A process model (Fig. 4) organizes a
workflow for creative production and SW development into
various, structured sections and phases, which are assigned to

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 02,2020 at 05:15:49 UTC from IEEE Xplore. Restrictions apply.

10

February 25-29, 2020 TCSET-2020 Lviv-Slavske, Ukraine

corresponding technologies, tools, languages, protocols and
methods of the enterprise, organization or industry. The first
of them, the mostly used agile approaches like RAD, XP,
DevOps, Kanban, Scrum must be mentioned and, the last but
least, so-called Micro-Services. Such advanced languages and
notations like UML, XML, BMPN as well as Automation ML
are widely used for HDS construction [1,2,8,10,11,12].

As agile model, DevOps (2009) uses a close correlation
between software development and operation teams. The
similar successful agile techniques are known as Kanban (with
origins by Toyota) and widely spread Scrum (refer Fig. 4).

Fig. 4. Overview of the process models

Scrum (1990’s) is a virtual analogy to rugby sports and
describes the successful teams, which are working on the
development of a project or SW product together and involved
into close human communication. As an iterative SWT process
model, Scrum does not describe classic project phases, but
instead of attaches the values of so-called continuously usable
results (artefacts’) right from the beginning of the project. The
following slogans are used in the industry:
 Slogan 1: “Do twice in half time” (refer XP).
 Slogan 2: “One for all and all for one” (a musketeer

slogan).
Automation ML (2006-2009) is widely used as markup

language (XML, *ML) and established protocol for sensor
pico-nets and IoT solutions. Automation ML supports a
domain-specific exchange format for IoT and can cooperate
with advanced SOA as well as Micro-Service architectures
(refer Fig. 7). Automation ML allows explicitly incomplete or
inconsistent descriptions of the PHY devices, machines or,
even, a plant and can provide benefit in early stages of the
planning. Automation ML is supported via a number of the
vendors for automation tools and wireless networks. However,
the technique can be nowadays understood as WIP.

The following use cases are typical for Automation ML:
Data and message transfer from robot simulation system to
robot specific programming system; Data and message transfer
from mechanical design to functional (electrical and PLC)
engineering; Data exchange between CAD systems; Interface
from CAD system to documentation system.

V. ADVANCED DATA ANALYTICS REGARDING TO “BIG DATA”

PROBLEMATIC

“Big Data” accumulation is nowadays typical for trading
and marketing, electronic payments, production process, for the
traffic from mobile providers, international justice and
forensics, for public fiscal authorities, pharmaceutical and
advertising industry. A large number of research institutes,
organizations and universities accumulate, store and process
large amounts of technical and scientific information [8,11,12].

In the conditions of modern industrial development, so-
called “Industry 4.0”, there are even more “Big Data” sources:
home automation, patient health data, M2M and robotic data,
business intelligence, pharmacological research, networking
and experimental data [11,12].The mobile networks and aps for
the 5G will definitely take an active part in the process of
receiving and processing of large data amounts [8,11,12] too.
By year 2020, the new 5G networks will use more than 50-100
billion sensors to download comprehensive information about
how we interact with things that surround us or that are even
inside of us?!As one of the most interesting further topics the
Blockchain technology occurs. This is nowadays exponentially
increasing and enables modern crypto-currencies: e.g. Bitcoin,
Monero, Ethereum etc.[3,4,8]. The technology of Blockchain
and its associated applications like crypto-currencies are so-
called “resource eaters” due to their enormous energy and
memory consumption. Large amounts of chained crypto blocks
are causing surely “Big Data problematic” [8,11,12]. For the
processing of “Big Data” the usual statistical concepts can be
deployed like S, R, SPSS, Oracle R, SAP Hana, IBM SPSS,
Netezza, Grafana. On the other hand, there is a Big Data
Appliance is NoSQL-Cluster from application servers for
massive-parallel analysis based on the integrated R tools and
Apache Hadoop. An advanced concept for overcoming of ”Big
Data” complexity, which uses proven freeware for Linux-
clusters and connectors to the conventional DB was discussed
in [11,12]. The complex poly-structured and redundant
retrieved data can be processed with higher performance within
an enterprise or institution data center. Some in Java
implemented modules allow even real-time control. The
expenditures in the form of investments CAPEX (Capital
Expenditures for hardware, cable infrastructure, premises) and
OPEX (Operational Expenditures for licenses, personnel,
electricity, ongoing maintenance) are significantly reduced.
The discussed concept delivers agility, possesses no rigidity
due to only small license costs. The components were [11,12]
as follows: Apache Hadoop, Apache HBASE, Apache
Phoenix, Apache Hive, Tableau, Talend and SCADA
(Supervisory Control and Data Acquisition).

VI. EVOLUTION AND TRANSITION TO MICRO-SERVICES

 Monolithic and quasi-monolithic architectures is factually
the term of 1960’s: no compilers, no OS, early modularization,
dependencies conflicts. So-called (quasi-)monolithic software
application is a software application composed of modules that
are not independent from the application to which they belong.
The main disadvantages of such approach are as follows:
Complex maintenance; Poor scalability; Unified deployment

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 02,2020 at 05:15:49 UTC from IEEE Xplore. Restrictions apply.

11

February 25-29, 2020 TCSET-2020 Lviv-Slavske, Ukraine

configuration; Dependencies conflicts. Then, as a challenge:
more flexibility, SWT compromises necessary and less
coupling is necessary!

A. Early Architectures

The evolution of distributed applications followed
historically from OOP through Web Services and SOA to
Micro-Services. The slogan in software technology (SWT) was
always as follows: „Always loosely coupling!” (the new Slogan
3).

The mostly appropriate approach is SOA (2005 -2010)
based on Web Services. The Web services are not the same as
SOA, but they can be used in a SOA. Web services are not
synonymous with Web applications, but they can be used by
Web applications. The Web application additionally provides a
GUI for entering or displaying information for or from the Web
Services. The next stage: Micro-Services with more flexibility
and less coupling (refer next sections, refer Fig.5).

Please notice, we as the authors are rigorous against the use
of the term “monolithic architectures” [1,2] regarding to the
conventional systems, but offer the use of so-called “quasi-
monolithic”, or, correspondently, “modular”, “object-oriented”,
“component-oriented”, “the architectures with macro-services”
etc. They are anyway not “monolithic” (refer Fig.5).

B. From quasi-monolithic architectures to Micro-Services

The discussed SWT methods and process models can be
classified into conventional and agile. The agile SWT methods
and process models are widely used for distributed systems and
HDS too. Nowadays the Micro-Services gained on the meaning
under use of firstly DevOps and Scrum. The both process
models support service-oriented approach: SOA and Micro-
Services.

Typically, UML and BPMN for workflow notation are
used. For IoT aps the Automation ML is mostly attractive.
What does it mean Micro-Services? The Micro-Services are a
concept for modularization, a specific organization and SWT
approach simultaneously. The components of such concept are
single Micro-Services, which work independent and
technically oriented (cp. SOA).Micro-service architecture can
be represented as a large entity across all individual Micro-
Services The both mostly popular slogans for Micro-Services
deployment are given below:

 Slogan 4: Unix-Philosophy („Do One Thing and Do It
Well!”)

 Slogan 5: Two pizzas teams (6-8 people can be with
satisfied two big pizzas)!

Fig. 5. From quasi-monolithic architectures to Micro-Services

Under use of above-mentioned concept, a quasi-monolithic
application is composed of several inflexible modules or
macro-services that are not fully independent from the
application to which they belong and one each other. The
deployment is carried-out with complexity, that means less
scalability and complicated configuration is only available. So-
called dependencies conflicts occur often too [1, 2]. On the
other hand, the application, which is based on Micro-Services
consider the necessary technological trade-offs and offer more
flexibility, loosely coupling of the modules and components, as
well as is easily configurable (Fig. 6). A comparison of Micro-
Services to so-called quasi-monolithic architectures with
internal look is given in Fig. above. A demarcation of the
Micro-Services to conventional SOA and Web Services is
represented in Table I.

Fig. 6. Micro-services: internal look

TABLE I. DEMARCATION OF MICRO-SERVICES TO SOA

Both SOA and Micro-Services use services as architectural elements.
SOA uses the services for integration
of different apps (EAI).

Micro-services bring a structure to
an App under use of the services.

The combination of the services is
“orchestrated” or “choreographed”
(so-called Orchestration or
Choreography), and the portals can
provide a common GUI for all
services.

Each Micro-Service can include a
GUI and implement the business
processes in similarity to a SOA with
Orchestration.

Conclusion: loosely coupled, more flexibility.

C. Differences of Micro-Services to Conventional
Architectures

Differences between the traditional architectures and
Micro-Services are represented in Fig.7 on the example of a
supermarket with established (macro-)services for customers,
products and carts.

Fig. 7. Differences between (Quasi-)Monolithic Architecture and Micro-

Services given on the example of a supermarket application

The main difference that we can observe in Fig. is that all
the features initially were under a single instance (a platform or

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 02,2020 at 05:15:49 UTC from IEEE Xplore. Restrictions apply.

12

February 25-29, 2020 TCSET-2020 Lviv-Slavske, Ukraine

an application server) sharing a database with further
replications. That means an additional performance loss due to
consensus support functionality: commit protocol between
replicated DB required. Then, under use of Micro-Services,
each feature can be deployed via a dedicated Micro-Service,
handling their own data and performing different
functionalities (refer Fig. 7).

D. Important Paradigms for HDS
The deployment of Micro-Services is mainly based on the

three following concepts [1]: CAP Theorem (1), Conway's Law
(2), Domain Driven Design (3). Let us to discuss these
paradigms more in detail. So-called Conway’s Law plays a
very important role for Micro-Services deployment and need a
more detailed overview [1]. Conway's Law possesses the
following distinguishing features:

1) Organization of the development department, which is
separated by functional groups.

2) Functional-specialized departments are divided to the
following Expert Groups: Experts for GUI; Experts for
Business Logic; Experts for DB.

3) Functional-separated architecture, which includes: Web
App with Backend Access; Backend Apps with logics for
business functions; Regional DB with fixed Data scheme;

4) Domain limited cross-functional teams contains:
Registration and management team; Rating and Matching
Team; Team for Chat function

5) Architecture based on domain-oriented enclosed entities
includes: Independent Registration Component; Independent
Component for Rating and Matching Functionality;
Independent Chat Component.

Fig. 8. Conway’s Law: Transformation 1

Fig. 9. Conway’s Law: Transformation 2

Furthermore, Conway’s Law offers two basic
transformations for the software development process which
are derived from DevOps and Scrum process models (refer
previous sections). The first transformation T1 is shown in
Fig.8. With T1, a quasi-monolithic system is transformed for
each app type and for different teams of software engineers: it
means the experts for GUI, experts for business logic as well as
for persistency layer. The second transformation T2 is shown
in Fig. 9.The whole development department is structured by

several functional teams via the discussed T2, which assigns an
independent component to each team (Registration, Rating,
Matching, Chat etc.).

Domain Driven Design [1] is the third important paradigm
to deploy Micro-Services and construct the flexible and
performing HDS. This paradigm is deployed mostly tighter
with Conway’s Law (refer Transformations 1 and 2 above).
The most important positions of the paradigm, which the
discussed approach can distinguish lucratively, are as follows:
Creation of special domains for SWT; Use of bounded
contexts; Breaking complexity of the developed projects

E. Micro-Services Platforms and Frameworks in comparison
The following famous Internet and cloud services are

known as steady consumers of the Micro-Services, and
namely: Google, Amazon, Twitter, eBay, Spotify, Otto, Azure
Service Fabric, The Guardian, Spring Cloud, Kubernetes [1].
The development of the Micro-Services can be supported via
the well-known frameworks (FW) as follows: Spring Cloud,
Netflix OSS (Open Source System), Kubernetes. The
implementation of a Micro-Service architecture is a complex
software-technological problem. However, there are a few
difficulties, which must be nearly considered (refer Table II).

TABLE II. MICRO-SERVICES PLATFORMS AND FRAMEWORKS
Netflix Spring Kubernetes

Micro-service Framework
Primary support of
internal Netflix-Apps
Partially available as OSS
Comparable
implementation for
multiple similar
functionalities within the
referenced FW

Micro-service Framework
Several tools have been
adopted from Netflix
Rebranding von Netflix
OSS as Spring Cloud
Implementation of
multiple functionalities is
comparable
Expanding ecosystem
Java-based technologies

Micro-service
Framework
A little bit other
concept
Multi-language runtime
platform
Expanding ecosystem
Implementation of
multiple functionalities
is comparable

VII. CASE STUDIES
This section represents some examples on the discussed

subjects. Under use of agile SWT process models, Micro-
Services, available tools and variety of application protocols
the modern apps appear which corresponds to HDS paradigms
and possess advanced features like QoE, performance, small
latencies and high flexibility as well as are autarky and energy-
efficient. Such apps are, in addition, better scalable and more
secured via a better management. One of possible options
regarding to security, privacy, authentication and
compulsoriness of such apps for HDS is use of Blockchain
infrastructures [3-5,8].An option is deployment of Ethereum,
which provides authentication and compulsoriness of
execution (or not execution) of some modules, (macro-
)services and Micro-Services within an established SW
system. A first example for such deployment of cryptographic-
supported workflow Smart Contracting represents.

A. Example 1. A Simple 1x1 Implementation
Fig. 10 depicts use of Micro-services 1 and 2 with simple

Request-Response functionality. The MS1 and MS2 can use
HTTP and WSDL are interoperable to Web Services.
Otherwise, they can be deployed for flexible construction of
the IoT app via GW under use AMQP (Advanced Message

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 02,2020 at 05:15:49 UTC from IEEE Xplore. Restrictions apply.

13

February 25-29, 2020 TCSET-2020 Lviv-Slavske, Ukraine

Queuing Protocol) for asynchronous messaging between MS1
and MS2.

Fig. 10. MS-2-MS: 1 x 1 -integration with Request-Response functionality

B. Example 2. Micro-Services with n x n -functionality
integration

An alternative application is provided via Fig. 11. The
architecture components for Micro-Services are depicted
below. The depicted GW enable to communicate under use of
variety of protocols, inter alia, HTTP, RPC (JSON-coded) and
WebSockets. WebSockets (2010-2011) is a L5-7 application
protocol (refer Fig. 11), which operates over TCP-connections
and is oriented to message exchange between Web-browsers
and Web-servers in real-time.

Fig. 11. Multiple MS with n x n -functionality integration

WebSocketsare quite different from well-known HTTP but
the both are compatible. WebSockets protocol was designed to
work over HTTP ports 80 and 443 as well as to support HTTP
proxies. Nowadays W3C develops the stable standard for API
Web Sockets because of many existing drafts. Since 2010-2011
the mostly known versions v6, v7, v13 are used. The beta-
version of the stable standard is known as IETF / RFC 6455.
WebSocket API in Web IDL is being standardized by the
W3C. Furthermore, WebSocketsare used to implement
different client or server apps. WebSockets protocol enables a
close interaction between browsers and servers with interactive
multimedia presentation and provides a full-duplex
communication. WAMP Stack means the server under
Windows OS, which consists of Apache, MySQL and PHP
(refer Fig. 11) and provides WebSockets/HTTP
interoperability.

C. Example 3. Multimodal X-platform Implementation based
on REST

Firstly, it enables so-called Continuous Delivery approach
[1] and can be deployed for large and complex applications. At
second, there are improved maintainability: i.e. each service is

relatively small and so is easier to understand and change it. It
enables you to organize the development effort around
multiple, autonomous teams. Each team (under so-called two
pizza team slogan) owns and is responsible for one or more
services. Each team can develop, test, deploy and scale their
services independently of all of the other teams. Each Micro-
Service is relatively small, i.e. easier for a software engineer to
understand and optimize it. On the other hand, IDE is faster
making the software engineering works more productive
[1].The application starts faster, it speeds up the deployment
and improves the fault isolation. For example, if there is a
memory leak in one service then only that service will be
affected.

The other services will continue to handle requests. In
comparison, one misbehaving component of a quasi-monolithic
architecture can bring down the entire system. The approach
eliminates any long-term commitment to a technology stack,
when developing a new service you can pick up a new
technology stack [1]. Fig. 12 depicts a solution, which
possesses a number of such benefits.

Fig. 12. Example on implementation

D. A Short Assessment

A short assessment for the above discussed Micro-Services
architectures is represented in Table III. The further successful
examples of Micro-Services implementation are as follows:
Netflix, eBay, Amazon, the UK Government Digital Service,
Twitter, PayPal, The Guardian, and many other large-scale
websites and applications have all evolved from monolithic to
Micro-Services architecture [1].

TABLE III. ADVANTAGES AND DISADVANTAGES OF MICRO-SERVICES

Pros Cons
Quasi-parallel execution
extended toolset and
management tools
flexible use of technologies
easier refactoring and reduced
risks for source code
adaptation
high load availability for the
system with integrated Micro-
Services
attractive employer
sustainable software with
better modular scaling and
code reusability
resource-efficient hosting

Complexity is hidden behind distribution on
micro-level
Distributed complexity of conflict resolution by
Micro-Services intercommunication
Replications are often required
Navigation over the entire system is often too
complex
RPC/RMI-based communication (remote method
calls) is time-critical, lack of performance must be
considered
Software tests are becoming more expensive
Testing and deployment are more complicated,
therefore, reusability of code is restricted
Falling innovation factor, some disappointment
and frustration.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 02,2020 at 05:15:49 UTC from IEEE Xplore. Restrictions apply.

14

February 25-29, 2020 TCSET-2020 Lviv-Slavske, Ukraine

VIII. USE OF BLOCKCHAIN IN HDS. SMART CONTRACTING

One of the mostly important Blockchain applications after
the mining of the crypto-currencies are so-called Smart
Contracts [3-5,8]. Historically, Smart Contracts (SC) doesn't
require exceptionally Blockchain, but certain consensus
algorithms (protocols), which are cryptographically
conditioned via hashes, private and public keys and signatures.
A “smart” contract is a software-based agreement that allows
and can contain a variety of contract terms. In the course of the
usual contract processing (transactioning), certain linked
actions can be executed automatically if there is a
corresponding trigger. The contracts are offered and signed
within and via the Blockchain or other Blockchain-like
infrastructure. The evident advantages of the discussed
approach are as follows:

 Digitality and legal openness of the platform;
 Transparency, costs and time savings;
 Automation of the workflow step processing;
 Deployment at the HDS solutions for compulsoriness.

Smart Contracts within the HDS are driven via Blockchain-
conform cryptographic structures, which provide
compulsoriness of required workflow steps and predictable
execution of the deployed modules, services, Micro-Services
and of other components within the internal architecture of the
above-mentioned HDS. The mostly appropriate environment
for SC is a private Ethereum-Blockchain. However, Ethereum
doesn’t work completely conform to European Laws. An
example of a Smart Contracting application for an e-Vallet for
the ICE trains of DB.de is given in Fig. 13.

Fig. 13. Smart Contracting on the example of DB.de

Furthermore, the Blockchain is used for Smart Contracting
applications for the following world-wide leading companies
deployed: Walmart, Maersk, Alibaba, CartaSense, Kuehne +
Nagel (aimed to logistics, sea freight, stock exchanges,
marking of containers), Nestlé, Tyson Foods, Unilever (aimed
to food delivery), Everledger (the registers for diamond
certification) [3-5,8]. Belorussia is the first national economy
nowadays, which has recognized SC completely. The
criticizers speak about the wrong ethic side: SC leads often to
reducing of the available jobs and distortion (corruption) of the
one of the most ancient social institutes of contracting law over
the world.

IX. CONCLUSIONS AND OUTLOOK
A definition for the HDS was given, as well as the

demarcation to conventional distributed systems offered.

Typical architectures for HDS were discussed. The QoS
requirements were specified; the mentioned parameters affect
the increasing of QoE. The distinguishing features for HDS are
clearly formulated and were described. Deployment of modern
SWT approaches lead to use of flexible service-oriented
architectures, inter alia, of Micro-Services, which provide
advanced features like QoE, higher performance, small
latencies, better flexibility as well as are autarky and energy-
efficiency. Such apps are, in addition, high scalable and more
secured, as well as offer better management and
reconfiguration. One possible option in the frame of HDS
regarding security, privacy, authentication and compulsoriness
of workflow steps, modules and service execution for such
apps Blockchain and Smart Contracting are. The theoretical
issues are proven via the represented examples and case
studies. This work can be positioned as a Work-In-Process.
There a lot unclear positions with Micro-Services due to
necessity of conflict solving between them and some
difficulties with use of development tools.

ACKNOWLEDGEMENT

Authors’ acknowledgements to the students of BA Dresden,
SAP Dresden, the director of BA Dresden Prof. A. Haensel, the
supervisor for international cooperation Mrs. I. Scherm,
colleagues from Lviv Polytechnic National University Prof. M.
Klymash, Dr. T. Maksymyuk, Dr. M. Beshley and colleagues
from TU Zilina Prof. T. Zaitseva and Prof. V. Levashenko, as
well as to friends for technical support, inspiration and
challenges by fulfilling of this work.

REFERENCES
[1] S. Newman. Building Micro-Services, Publishing by O’Reilly Media,

USA, 2015, ISBN: 978-1-491-95035-7, 473 p.
[2] B. Fekade et al., “Clustering hypervisors to minimize failures in mobile

cloud computing,” Wireless Communications and Mobile Computing,
vol. 16, no. 18, 2016, pp. 3455-3465.

[3] MIT Blockchain Course (Online 20.10.19): http://executive-
education.mit.edu/MIT-Blockchain/Online-Course/.

[4] A. Antonopoulos. Mastering Ethereum: Building Smart Contracts, 2019,
O’Reilly Media, 345p., ISBN978-1491971-949.

[5] Machine Type Communication (MTC) in 3GPP (Online 20.10.19):
http://www.3gpp.org/

[6] T. Maksymyuk et. al., “Cooperative channels allocation in unlicensed
spectrum for D2D assisted 5G cellular network, “ IEEE Int. Conf. on
Advanced Information and Communication Technologies (AICT), July,
2017, Lviv , Ukraine, pp. 197-200.

[7] A. Luntovskyy, M. Klymash. Software Technologies for Mobile Apps,
Apps for Fog Computing, Robotics and Cryptoapps, Lviv, 2019, 247 p.
(Monograph, Ukrainian, ISBN 978-617-642-399-7).

[8] A. Luntovskyy, J. Spillner. Architectural Transformations in Network
Services and Distributed Systems: Service Vision. Case Studies,
Springer Nature/Vieweg, 2017, 344p. (ISBN: 9-783-6581-484-09).

[9] T. Maksymyuk et al., “Blockchain-based intelligent network
management for 5G and beyond,” 3rd IEEE International Conference on
Advanced Information and Communications Technologies,
(AICT’2019), July, 2019, Lviv, Ukraine, pp. 36-39.

[10] A. Luntovskyy, D.Guetter, I.Melnyk. Planung und Optimierung von
Rechnernetzen: Methoden, Modelle, Tools fuerEntwurf, Diagnose und
Management imLebenszyklus von drahtgebundenen und
drahtlosenRechnernetzen, Handbook, Springer Vieweg+Teubner
Wiesbaden, 2011, 435 p. (ISBN 978-3-8348-1458-6, German).

[11] A. Luntovskyy, L. Globa. Performance, Reliability and Scalability for
IoT, IEEE Conf. IDT-2019, Zilina, Slovakia, June 2019.

[12] R. Minerva et al., “Towards a definition of the Internet of Things (IoT),”
IEEE Internet Initiative, vol. 1, no. 1, pp. 1-86, 2015.

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 02,2020 at 05:15:49 UTC from IEEE Xplore. Restrictions apply.

