
Building a prototype based on Microservices and
Blockchain technologies for notary’s office: An

academic experience report

Pamella Soares de Sousa, Nataniel Parente Nogueira, Rayane Celestino dos Santos,
Paulo Henrique M. Maia, Jerffeson Teixeira de Souza

State University of Ceará
Fortaleza, Ceará

{pamella.soares, nataniel.parente, rayane.santos}@aluno.uece.br, {pauloh.maia, jerffeson.souza}@uece.br

Abstract—The problem of lack of trust in data sharing
between different parties can bureaucratize processes carried
out by entities such as notary’s office. Blockchain technology
can circumvent this problem by providing a distributed and un-
changing base. By merging this technology with the microservice
architecture, secure and robust systems can be created due to the
independent deployments and development of microservices, thus
easing the application maintenance and evolution. Considering
the advantages in the combination of the mentioned technologies,
the present work aims to propose an approach that allows
the integration between notary’s offices and other institutions,
ensuring security and celerity in the exchange of information
between the parties. In this paper we report on our academic
experience in the creation of the proposed approach, a pilot
prototype, the development process and the tools used in the
implementation, and the lessons learned.

Index Terms—Microservices, Blockchain, Notary’s Office,
Smart Contracts, DevOps

I. INTRODUCTION

Despite the technological immersion we are witnessing,

with increasingly powerful smartphones and more robust,

reliable and distributed systems, we still face systems and

services from public and private agencies which are lacking in

the quality of service delivery to the population. The way these

types of services are offered usually generate long queues and

discomfort in those establishments [1].

Birth registration of a child in Brazil, for example, is usually

done in a civil registry notary’s office, in person. As a rule, the

child’s father, preferably, goes to the notary’s office holding an

identity card and statement of live birth issued by the hospital1.

Brazil recorded an average of 7945 live births registered per

day in the year 20182. This statistic gets more complex when

we include the other services provided by the notary’s office.

Nowadays the technology is an ally for institutions that

want to improve their processes and bring convenience to their

customers. One of the possible solutions to the previously

mentioned problem is the creation of applications that offer

trust between the involved parties, such as notary’s offices

1https://guiadocumentos.com.br/certidao-de-nascimento/
2https://sidra.ibge.gov.br/tabela/2679

and hospitals. The blockchain technology arises as a potential

solution to this issue. [2].

A blockchain is essentially a distributed database of records

that have been executed and shared among participating par-

ties [3]. The five basic principles of blockchain are: dis-

tributed database, peer-to-peer transmission, transparency with

pseudonymity, irreversibility of records and computational

logic [4]. Therefore, all parties have access to include a new

information on the network, but never to erase or to update

data.

Since different systems are integrated in a distributed man-

ner, it is necessary to develop complex, robust and resilient

applications in order to be able to deal with scalability,

decentralized operations, intercommunicating services, avail-

ability, etc. In this realm, the microservice-based architecture

becomes a prominent solution due to its way of implementing

applications as a collection of small and independent services

that can communicate to each other through well-defined

interfaces using lightweight protocols [5], [6]. For this reason,

the microservices architecture is maturing as an architectural

style for developing distributed software systems with high

requirements for scalability and adaptability in companies such

as Amazon, Netflix, and LinkedIn [7].

Microservices make the integration of new entities into the

system easier and faster, since modularization and scalability

are some their key features [8]. Therefore, by combining

blockchain technology with the microservice architecture, it

is possible to encapsulate contract functions in a microservice

[9] and create a robust and secure system, as this architecture

can optimize the scalability and deployment of an application.

In this context, our goal is to propose an approach, based on

microservices and blockchain, that allows the integration be-

tween notary’s offices and other institutions, ensuring security

and speed in the exchange of information between the parties.

Such approach makes it possible to encapsulate smart contracts

in specific microservices depending on the functionalities

determined for the service. Therefore, the main contribution

of this paper is threefold: (i) an approach for the proposed

business model integrating blockchain and microservices; (ii)

a prototype implementation that can generate a birth certificate

122

2020 IEEE International Conference on Software Architecture Companion (ICSA-C)

978-1-7281-4659-1/20/$31.00 ©2020 IEEE
DOI 10.1109/ICSA-C50368.2020.00031

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 26,2020 at 09:13:24 UTC from IEEE Xplore. Restrictions apply.

and register it on a blockchain; and (iii) an experience report

on the design decisions and lessons learned that can direct new

students in the field.

This paper is organized into nine sections as follows: Sec-

tion 2 explains the blockchain and microservice architecture

style, while Section 3 discusses the main related work. Section

4 describes the functional and quality requirements for the

prototype application, as well as the chosen microservices.

Section 5 details the main flow of the application, while

Section 6 reports the development process, including the orga-

nization of sprints, the DevOps tools used, and implementation

pipeline. Section 7 shows the design decisions and lessons

learned in the project development. Section 8 exposes the

threats to validity of the work. Finally, section 9 draws the

conclusions and future work.

II. BACKGROUND

A. Blockchain

Currently, most of the digital economies rely mainly on

third parties to validate financial or operational transactions,

such as the services offered by the notary’s offices in Brazil,

the use case addressed in this paper. However, this type of

system is vulnerable to human failure, intrusion, or can be

maliciously managed. The blockchain technology is an alter-

native to circumvent the aforementioned problems. By using

of cryptography techniques, it offers greater confidence and

facility in transactions, thus creating a decentralized system

without the need for third parties [10].

According to Cyran [11], a blockchain can be characterized

as a distributed data structure, a public ledger, with all trans-

actions executed in the system, in which each transaction in

the public ledger is unchanged and verified by consensus of

most participants in the system, avoiding failures and ensuring

data reliability. Such agreement is achieved through consensus

mechanisms which are sets of steps taken by all or most of

the nodes to agree on a state or value [12]. This mechanism

is what helps the blockchain system to be secure, preventing

its users from sending wrong or fraudulent information.

Blockchain, introduced by Satoshi Nakamoto through the

Bitcoin, was initially proposed to compose an electronic pay-

ments system, a peer-to-peer online communication protocol

that facilitates the use of cryptocurrencies [13]. There are

now new business models proposed through a “programmable

blockchain”. This is possible due to the use of smart contracts

that have demonstrated their effective use when integrated with

the blockchain technology.

In short, a smart contract can be understood as an executable

script stored on the blockchain that is capable of automatically

executing the terms of an agreement in a transaction [14].

After the contract is deployed to the blockchain, users can

execute them by sending transactions to the contract address.

Then, transactions will be executed on all consensus nodes.

The contract can, according to the transaction, read, write on

their private storage and even create new contracts.

The blockchain has important properties, such as the im-

mutability of data when recorded in the public ledger. Data

update is only possible through a new transaction and a new

consensus. In addition, data integrity is ensured by replicating

data and transactions across different nodes, keeping the

system available and secure. Transactions in the public ledger

are passive of verification and auditability. Furthermore, the

implementation technology is often open and verifiable [15].

B. Microservice-based Architecture

Microservices are an architectural style to develop a single

application as a collection of independent, well-defined, and

intercommunicating services, each running in its own pro-

cess and communicating through lightweight mechanisms [5].

Microservices are built around business capabilities using a

concept from the DDD (Domain Driven Design) [16], named

bounded context, in order to delimit their business functional-

ities and associated data. In particular, a microservice can be

understood as a single responsibility application that can be

independently deployed, scaled, and tested [7]. By adopting

the microservices architecture, developers can engineer ap-

plications that are composed of multiple, self-contained, and

portable components deployed across numerous distributed

servers [17].

The microservice architecture provides benefits such as

independent deployments and development, small and focused

teams, fault isolation, decentralized governance, and decen-

tralized data management [6]. In particular, it proposes a

solution for efficiently scaling computational resources. Since

microservices can be individually scaled, they provide an

efficient manner to allocate computational resources, enabling

flexible horizontal scaling in cloud environments.

III. RELATED WORK

Despite that the literature involving blockchain and mi-

croservices is still in its beginning stage, there are some

approaches that combine the benefits of both technologies to

create new systems and, in some cases, making analogies

between smart contracts and microservices. Some of these

papers are summarized below.

Da Silva et al. [18] implemented a Proof of Concept

(PoC) based on emerging technologies such as blockchain

Hyperledger, microservices, and big data. Such system aims

to provide adequate assistance to patients by ensuring an

appropriate emergency care. Consequently, it is possible to

reduce the waiting queue at hospitals and to make a better

use of resources. In that work, while blockchain was used to

create two networks (one for Patient and other for Attendance),

microservices formed the underlying architecture of the sys-

tem. In addition, Scrum was used to ensure that the system

specifications were achieved in a period of 17 academic weeks.

Dai et al. [19] propose TrialChain, a platform that integrates

private and public blockchain, a web system and a data

science platform from the National Center for Cardiovascular

Diseases (CNDC) from China. The proposal aims to increase

the integrity and forms of data validation in laboratory infor-

mation and clinical trial management to reduce the risk of

data manipulation and to increase confidence in the results.

123

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 26,2020 at 09:13:24 UTC from IEEE Xplore. Restrictions apply.

Microservices were used to create a multi-host architecture

that runs independently and replicates blockchain data to each

host to protect the system against data loss in the event of

node failure. A web interface was created to allow query and

data validation in the public blockchain.

Cyran [11] presents a solution that aims to protect sensitive

health data in hospital environments. The system architecture

consists of the use of container Docker that enhances system

deployment. The container contains the web application layer,

the key store service, the cache service, and the blockchain

service, all implemented using the microservices architecture.

Protection of data is achieved by using cryptographic layers

and public and private keys to be encrypted before being

inserted into the blockchain and decrypted when sharing data.

The solution also uses smart contracts, which assist in data

discovery, retrieval, and decryption.

Nagothu et al. [20] suggest the development of a microser-

vice surveillance monitoring system. To overcome architec-

tural security vulnerabilities due to the use of distributed data,

it is proposed the use blockchain in the application. The au-

thors implemented the system with Facial Recognition, Audio
Analysis, License Plate Recognition, and Behavior Analysis
microservices, each of them with a dedicated database whose

information is synchronized and stored in the blockchain. In

addition, smart contracts record and sign certain surveillance

data according to what is bound to nodes.

Tonelli et al. [15] discuss that microservices and smart

contracts share many similarities, such as decentralization.

The main point in common is that smart contracts can com-

municate with each other, just like traditional microservices.

Furthermore, each smart contract provides its service, such

as changes, updates, login, and general transaction types. The

authors suggest a use case whose the primary goal is to enable

doctors to keep track of their patients’ disease diagnoses.

Three smart contracts were implemented: DoctorPseudoRest,
PatientPseudoRest, DiagnosisPseudoRest.

IV. REQUIREMENTS AND MICROSERVICES

This section presents the functional and quality require-

ments of the proposed system that were identified based on the

main services provided by a notary’s office. From this analysis,

the microservices were delimited according to the business

rules and data modeling of the identified requirements.

A. Functional Requirements

As mentioned, the requirements were raised from the main

flow of a notary’s employee performing his/her service, rang-

ing from logging on the system to realizing a customer-

requested service. To elicitate the requirements, we used local

observation, brainstorming and scenarios. Those requirements

were represented in the form of short, abstract and high-

level descriptions through user stories [21]. Initially, only the

notary’s employee will interact with the system, as presented

in Table I.

TABLE I
USER STORIES

ID User Story - Notary Employee
R1 I am able to log in to the notary’s system.

R2 I can list the services provided by the notary.

R3 I can list the customers registered in the notary.

R4 I can select the customer, its requested service, and start an order.

R5 I am able to register a customer with the system.

R6 I can register a certificate record in the system.

R7 I can perform a digital signature on behalf of the notary.

R8 I can generate a payment slip for the customer.

B. Quality Requirements

We specify quality requirements considering the demands of

the proposed approach and how microservices and blockchain

can contribute, both together and individually, to achieve the

quality attributed, as shown in Figure 1.

Fig. 1. Advantages of microservice and blockchain technologies

In general, the use of blockchain technology, along with

the microservice architecture, can generate benefits on scal-

ability, security, and information sharing, among others. The

proposed approach uses the terminology “distributed” in two

perspectives. On the application side, a microservice architec-

ture is comprised of several independent and distributed sub-

applications that can provide several benefits as detailed in

Section II. Regarding the blockchain, the fact that information

is stored in a distributed manner brings other advantages such

as resilience, decentralized and multi-party operations, for

example.

Considering resilience of the application side, a problem

in a specific service would only affect it. Other services

would continue to handle requests typically. In a monolithic

system, the whole system would be damaged if one component

misbehaves. The resilience of blockchain technology is due to

the replication of the information on each node of the network,

allowing them to be quickly recovered if any node loses it. In

both situations, the problem of a single point of failure can be

mitigated.

One of the key features of blockchain is enabling a shared

infrastructure in which there is no control by the participating

organizations. This technology is suitable for multi-part sce-

narios in which intermediaries are acting within the current

systems. Since there are multiple parties, the same microser-

vice may be requested by different entities, depending on

what the microservice is designed to do. Besides, decentralized

124

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 26,2020 at 09:13:24 UTC from IEEE Xplore. Restrictions apply.

operations are possible since no party controls the system, but

each user can manage his/her own data and assets [22].

C. Microservices

From the user stories mentioned in Table I, we delimited the

microservices of the system. Hence, the approach back-end is

being formed by six microservices:

• Login microservice: allows notary’s employees to log

in to the system so that they can perform the services

requested by the client.

• Client microservice: maintains the registry of the no-

tary’s clients. It is possible to register information such

as name, ID, and date of birth, among others. The

microservice also allows modification and removal of this

information.

• Service microservice: maintains the registry of the no-

tary’s services. A notary’s office performs civil and other

services, and each service has a description and its price.

• Order microservice: maintains all customer orders and

their services requested on a given date.

• Certificate registration microservice: records all cer-

tificates that have been requested by notary’s customers

(e.g., birth, marriage, death).

• Signature validation microservice: the registry must

validate and record the veracity of the certificate before

it can be included in any database. Thus, we designed a

microservice that allows the notary’s digital signature so

that the document is registered only after this procedure.

V. THE PROPOSED APPROACH

Figure 2 represents a general flow of activities that should

be followed to allow the development of applications that use

our proposed approach. We consider two types of participating

entities that will be involved in the approach:

• Notary’s office: company or institution, public or private,

in which the issuance, analysis, authentication, registra-

tion, and filling of notes and documents takes place,

giving public faith to the presented documents .

• External institution (EI): organization that the notary

needs to consult to continue the activities related to the

respective service. Each service provided by the notary

may depend on authenticated and validated information

from a specific EI. In addition, those entities may also

consult and record information on the blockchain in

accordance with their respective services.

In the current approach, the flow described in detail will be

related to notary services, since this paper intends to present

the development of the microservice architecture for this

domain. We illustrate the proposed approach with a scenario

based on the real process of issuing a birth certificate in Brazil.

Scenario: A child was born in a certain hospital that recorded

his/her Statement of Live Birth (“Declaração de Nascido Vivo”

in portuguese - DNV) on the blockchain. The parents went to

the notary’s office to apply for certificate registration, and the

notary’s office consulted whether the child’s DNV was already

contained in the shared blockchain records. After verifying

that the declaration was valid, the notary’s office begin the

procedures for registration and issuance of the child’s birth

certificate. After the notary’s office completed the process of

the requested service, the child’s information and certificate

are recorded on the blockchain. Since it is necessary that the

newborn child already has its Individual Taxpayer Registration

(“Cadastro de Pessoa Fı́sica” in portuguese - CPF), the parents

requested the CPF to the Post Office, the place of issue of such

document in Brazil. In order to carry out the necessary checks,

the Post Office’s employee verified on the blockchain whether

the child was already registered in a notary’s office. After that

verification was positive, the CPF request carries on.

Given this real scenario, the steps presented in Figure 2 will

be described as follows, which will be detailed to present the

microservices involved:

1) Blockchain registration: the EI referring to the hospital

where the child was born records her DVN on the

blockchain so that it is available to the notary’s office

network that has access to the blockchain.

2) Initial procedures: the client, father or mother of the

child, arrives at a notary’s office and requests a service.

In this case, the present paper assumes that the registry

is of the type “Civil notary’s office”, which can perform

registration and issuance of documents such as birth,

marriage and death certificates. For example, a notary

employee serves the client and logs in to the system to

start the requested service. After logged in, the employee

checks whether the client is already registered in the

notary’s office. If so, the client and his/her requested

service are selected and included in an order. Note that

the Login, Client, Order, and Service microservices were

requested.

3) Blockchain query: at this time, the clerk will make a

request to authenticate information necessary to continue

the requested service. This step will be performed if the

service needs data shared by an EI. At this time, the

employee can check the newborn’s DNV to validate it.

4) Notary service procedures: the employee will request

all necessary data and documents to fill in some forms.

Since the client chose the birth certificate registration

and issuance service, for example, then the information

to include will be: ID and CPF, as well as a birth

certificate or parental certificate. DNV would not be

required as it can be accessed through the blockchain.

Having the necessary information, the employee will fill

in a form and attach a copy of the documents. He/she

finishes the service by generating the certificate and

digitally signing it. For this step, to sign the document,

the Signature Validation microservice is required. Before

the blockchain registration is effective, an invoice for

payment is generated, delivered to the client, who in

turn must make the payment in some notary’s cashier

department. Note that the Order microservice will also

be solicited.

5) Blockchain registration: after completion of the pro-

125

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 26,2020 at 09:13:24 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Execution flow of a notary service in our proposed approach.

cedure and having proof of payment for the service,

all information collected, along with the notary’s digital

signature, will be recorded on the blockchain. Here,

the microservice involving the use of the blockchain is

requested (Certificate Registration microservice).

6) Final procedures: as each client may have several

orders, the current order will be finalized. Here again the

Order microservice will be requested for its completion.

7) Blockchain query: this step occurs in a process similar

to step 3. However, the the Post Office’s employee is the

one who consults the registered certificate at the notary’s

office.

VI. SYSTEM IMPLEMENTATION

In this section, we present the development tools and

processes used, as well as the description of the smart contract

functions related to the Certificate Registration microservice.

As discussed, we implemented a pilot of the proposed ap-

proach, i.e, a simplified version of the flow shown in Figure

2 considering a notary system. The complete prototype is

available on GitHub3.

A. Tools

The microservices from Section IV-C were listed as tasks

in the online tool “Trello”. This allowed developers to have

a better understanding of the development process evolution.

The development environment consisted of the components

and tools listed in Table II.

B. The DevOps Development

According to Dyck et al. [23], DevOps is an organizational

approach that emphasizes empathy and collaboration between

IT development and operations teams in systems development

organizations to produce resilient systems and promoting

continuous delivery of changes. We adopted this approach to

improve the quality of development taking into account team

communication, process optimization, speed of production,

continuous delivery, proper use of tools, and the other benefits

3https://github.com/Notary-BlockMS

TABLE II
IMPLEMENTATION TOOLS

Software Version Purpose

NodeJs 10.16.3
Provides a development framework that allows
the use of NodeJs package manager NPM to
install JavaScript dependencies.

Java 13.0.1
Programming language and object-oriented
computing plataform used to develop Service
Discovery in this project.

Solidity 5.6.0
It is an object-oriented programming language
used in this paper to write smart contracts on
a blockchain platform, Ethereum.

Etherjs 4.0.0
A compact and complete JavaScript library that
allows interaction with the Ethereum network.

Web3 1.2.4
A library that allows a JavaScript application
to interact with an Ethereum network node
using an HTTP or IPC connection.

Mongodb 4.2.0
NoSQL database used at this work to store
system-generated data.

React 16.12.0
Declarative, efficient and flexible JavaScript
library for creating user interfaces (UI).

that this culture provides to the team. The DevOps techniques

used in this work are listed below by categories:

• Agile methodology: the Scrum methodology was widely

used to perform software project management and plan-

ning. The sprints were well defined and a Sprint Review

Meeting was held at the end of each sprint.

• Collaboration: as mentioned previously, Trello was used

by the team to manage the project. In addition, we

adopted Slack as a collaborative channel for communi-

cation between team members and integration with other

tools.

• Continuous Integration (CI): during the project devel-

opment, we used the “Travis CI” tool to automate the

testing and building of the source code of each commit.

• Testing: unit tests were used in the system functions to

ensure that the system is working as specified. We used

the JS Tape as testing tool.

• Deployment and Cloud: Docker was used to create

a microservice image and to deploy the container on

the cloud. The microservices were deployed on cloud

platforms after being containerized: the Google Cloud

126

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 26,2020 at 09:13:24 UTC from IEEE Xplore. Restrictions apply.

hosted the Service Discovery application, while Heroku

hosted all other microservices.

C. Development Pipeline

We used agile methodology to organize project execution

due to team characteristics and the need for constant delivery.

Our team consisted of three first-year students of a master’s

degree in computer science and each delivery was evaluated

by a professor who represented the client of the application.

We followed the sprint concepts of the Scrum method, which

were executed as follows:

• Sprint Zero: All developers had their first contact with

microservices development and created a mock microser-

vice to be consumed in the cloud.

• Sprint 1: Firstly, the Login microservice was developed.

The user was included by the team using a collaboration

platform for API development. Then, it was possible log

in the web application typing the registered email and

password. The CRUD of the Client microservice was

implemented. Thus, the functions of listing all clients

registered in the notary’s office, searching them through

an id, including them in the database, updating the

data, and the possibility of removing it from the client

list by searching their respective id were implemented.

The CRUD of the Service microservice was also imple-

mented.

• Sprint 2: At this moment, we focused on the development

of the front-end. The Login, Home and Register Client

pages were developed in the web application.

• Sprint 3: The Register Certificate and View Document

pages were developed and the API Gateway was build.

• Sprint 4: Finally, Eureka and Zuul were used to imple-

ment service discovery. Both services were deployed to

the Google cloud platform. The Digital Signature pages

were developed in the web application. A CRUD of the

Certificate Registration microservice was developed. We

implemented a smart contract that allows a certificate

hash to be entered and viewed when a user searches for it

using its ID, as this microservice communicates with the

Ethereum blockchain. We used a storage technique when

adding a conventional database so that the document is

stored off-chain (see Section VII-A).

At the end of each sprint, functional microservices were de-

ployed at the Heroku platform after local tests and executions.

A mock service was also developed to simulate the operation

of the signature validation microservice. However, in future

work, it is necessary that the signature validation microservice

is integrated with a Certifying Authority (CA).

D. Smart Contract Implementation

As already explained, the system was implemented by using

Ethereum and its dependencies. In particular, this section

details the smart contract used by the Certificate Registration

microservice, giving an overview of its functions, which is

presented by its pseudo-code in Algorithm 1.

Algorithm 1: RegisterCertificate smart contract

function includeCertificateBlockchain(id, certificate)
if msg.sender != owner || DocumentsList[id].used then

Abort;

insert Document in DocumentsList;
return sucess;

end function
function getAllCertificatesBlockchain()

return DocumentsList;

end function
function getCertificateBlockchain(id)

return Document;

end function
function changeOwner(newOwnerAdress)

if msg.sender != owner then
Abort;

update current owner with new owner adress;
return sucess;

end function

The Certificate Registration microservice can perform the

registration of the certificate requested by the client by com-

municating with the RegisterCertificate smart contract, which

consists of four functions that (i) add a certificate, (ii) return

all blockchain certificates, (iii) return a registered certificate

by its ID and (iv) change contract owner.

The first function of the Algorithm 1 includeCertificate-
Blockchain registers the certificate on the blockchain when

given two parameters: id and certificate. Only the contract

owner can execute this transaction, so a verification is per-

formed. After the necessary checks have been carried out, the

timestamp and used (boolean variable), along with the input

parameters, are stored in a struct that is stored in a certificate

list. The used variable is adopted to prevent a certificate with

the same id from being inserted into the blockchain. The

second getAllCertificateBlockchain function returns the list of

all inserted document IDs. Thus, since blockchain data is

append only, one can get the history of the certificates.

The third function of the smart contract is getCertificate-
Blockchain, which returns a Certificate structure with the

specific ID informed as parameter. Finally, the changeOwner
function allows the contract owner’s address to be changed, but

only the current owner is allowed to modify it. This function

is necessary to enable the change of the user who will perform

certain smart contract operations. In this paper, we imple-

mented only the RegisterCertificate contract. However, as new

microservices are added to meet new system functionalities,

other specific contracts can be planned and encapsulated

according to the new microservices funcionalities.

VII. DISCUSSION

A. Design Decisions

Requirement specification. Initially, we conducted a survey

of the mainstream requirements to be implemented. Activity,

sequence, and use case diagrams have been created for better

understanding and specification of the system. We used ab-

stract descriptions of user stories using non-technical language

127

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 26,2020 at 09:13:24 UTC from IEEE Xplore. Restrictions apply.

to define required system behavior. Table 1 contains the list

of user stories from the perspective of the notary’s employee.

Microservices decomposition. We delimited microservices

from the business rules and data model to which each raised

requirement was related. For this work, we identified the need

for six microservices to compose the proposed approach, as

detailed in Section IV-C.

Data management. Regarding data storage, each microser-

vice has its own database. This decision allows each service

to manage its own database, either through different instances

using the same database technology, or even using different

database systems, since the idea of microservices is that they

are independent and uncoupled.

Use of the blockchain. The goal of the approach is to provide

a safer and more agile system for the Brazilian notary’s offices.

There is an excess of bureaucracy in those places and the way

processes are executed is still quite rustic, causing a waste of

time, favouring the chances of fraud and always needing an

intermediary in the services provided. To solve these problems,

it was necessary a way to ensure the immutability of the

information and, at the same time, bringing agility to the

services provided by the Brazilian notary’s offices. Therefore,

we used blockchain as a data storage component for the

microservices related to the notary’s services. In order to

mitigate the storage scalability problem due to the large data

volume, we used an off-chain technique in which only the

document hash issued by the notary’s office is stored in the

blockchain, while the document itself is stored in a traditional

database.

Communication style. The communication between the mi-

croservices was accomplished through the HTTP protocol

methods (GET, PUT, POST, and DELETE), using the JSON

format to data exchange. Thus, the communication followed

a RESTful style.

Service discovery and API gateway. To mitigate the chal-

lenge of working with URLs from different microservices, we

used a service discovery (Eureka) and dynamic routing (Zuul)

solution in the approach. Thus, the requests were centralized

in one place and a proxy forwarded them to the correct

microservice.

B. Lessons Learned

Creating an application upon a microservice architecture

using blockchain is not such a simple task, specially for

inexperienced groups. During the development, we found

several challenges, most of which were overcome. We describe

some lessons learned in the development process that may be

useful to others with little experience in the area.

Inexperience in microservices can be overcome. At first,

the implementation of microservices can be a little confusing

to be understanding. Our team had no practice in developing

microservices. To begin the development, some books and

tutorials taken from the Internet have been selected to aid

the comprehension of the subject. Before implementing the

main application, each team member created a simple example

microservice to practice the studied concepts. With a little

practice and theoretical background, our team achieved good

results.

The choice of microservices. The process of choosing which

microservices would constitute the application of this paper

caused discussions among the members. To separate the mi-

croservices, we based our decision on some previous work

that carried out the decomposition of monolithic systems in

a microservice-based architecture. We also used an approach

of separating microservices according to their requirements,

taking care that the failure of one microservice does not affect

the functionality of another.

Choice of microservices that would use blockchain. The

choice of which microservices would use a blockchain tech-

nology also raised many questions in the team. In some cases,

the technology is only optional, but in others it is essential.

To guide our team in this choice, we used similar academic

studies and a flowchart [22] with questions that indicated in

the use or not of the blockchain technology. We applied this

flowchart to each microservice rather than to the general use

case, as done [22].

DevOps improves production. In the beginning the team

faced resistance to perform continuous delivery. Using DevOps

tools has improved implementation progress and feedback

documentation. We could better measure the activities we

would deliver on each sprint and upcoming deliveries.

VIII. THREATS TO VALIDITY

This paper has threats to external, construction, completion,

and internal validity [24], as follows:

• Restrictive: this paper mainly introduces an approach for

notary’s offices, without expecting to extend this proposal

to solve problems of hospitals, police stations or other

similar entities. This constitutes a threat to the external

validity of the paper. However, the approach has the

potential to be generalized to other areas of knowledge.

• Limited knowledge of notary business rules: despite dedi-

cating this solution to notary’s offices, we do not try to be

exhaustively strict about the business definitions already

delimited by notary’s offices, thus allowing a threat to

the construction validity and likely changes to execute

this solution in a real environment (production version).

However, we conducted informal interviews with legal

specialists and conducted a preliminary survey of the

registers related to the notary’s office in Brazil.

• Limited knowledge of technologies: we consider the

threat of completion validity to be limited experience

in blockchain technology, microservices architecture, and

the merging of the two. Despite the short deadline for the

project execution, we strove to assimilate as much content

as necessary for the system to perform well.

• Decisions made during the development: due to the lack

of knowledge of the notary’s technologies and business

rules, a threat to internal validity should be considered,

as the choices we made may have influenced the state of

the application we present. To alleviate this problem we

had constant feedback with the course’s supervisor.

128

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 26,2020 at 09:13:24 UTC from IEEE Xplore. Restrictions apply.

IX. FINAL CONSIDERATIONS

This paper presented an academic experience based on

microservice and blockchain technologies for notary’s offices.

We detailed a an approach for the proposed business model

and then showed a prototype implementation for issuing a

birth certificate and registering that certificate on a blockchain

using our approach. Finally, we reported on and discussed a

set of design decisions and lessons learned that can help other

students and beginners in the technologied addressed in this

paper. We developed six microservices, one of them capable to

connect to Ethereum, a public Blockchain, to record informa-

tion from a certificate. We also developed a web application

as a visual layer to manage those microservices. We used the

following DevOps techniques to build the application: Scrum,

CI with Travis, unit tests, Docker, Google Cloud, Heroku, and

Trello. Our development pipeline was divided into five sprints

of twenty days each.

As future work, we plan improvements in both blockchain

technology and microservices. We intend to improve the ex-

ample application to receive other external entities, as well as

blockchain technology related enhancements. Regarding mi-

croservices, we can extend the application to allow customers

to interact with the system themselves, which will demand

the implementation of new services. Those enhancements are

capable of providing secure communication between entities

that currently have few or no communication and greater

celerity and convenience to the end client of the application.

Furthermore, we intend to carry out an analysis of performance

metrics of the developed application. At last, we plan to

generalize the proposed approach to formalize a reference

architecture to the secure and scalable integration of services

provided by different entities.

ACKNOWLEDGMENTS

This work is partially supported by the National Council

for Scientific and Technological Development – CNPq/Brazil

under grant Universal 438783/2018-2 and by the Coordina-

tion for the Improvement of Higher Education Personnel -

CAPES/Brazil, under grant 88882.447675/2019-01. In addi-

tion, the authors are grateful for the assistance given by FFIT

(Innovation and Technology Services).

REFERENCES

[1] D. Chuen and R. Deng, Handbook of Blockchain, Digital Finance,
and Inclusion, Volume 1: Cryptocurrency, FinTech, InsurTech, and
Regulation. Elsevier Science, 2017.

[2] V. Gatteschi, F. Lamberti, C. Demartini, C. Pranteda, and V. Santamaria,
“To blockchain or not to blockchain: That is the question,” IT Profes-
sional, vol. 20, no. 2, pp. 62–74, 2018.

[3] M. Crosby, P. Pattanayak, S. Verma, V. Kalyanaraman et al., “Blockchain
technology: Beyond bitcoin,” Applied Innovation, vol. 2, no. 6-10, p. 71,
2016.

[4] M. Iansiti and K. R. Lakhani, “The truth about blockchain,” Harvard
Business Review, vol. 95, no. 1, pp. 118–127, 2017.

[5] M. Fowler, “Microservices,” 2014.
[6] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov, “Mi-

croservices: The journey so far and challenges ahead,” IEEE Software,
vol. 35, no. 3, pp. 24–35, May 2018.

[7] S. Newman, Building Microservices, 1st ed. O’Reilly Media, Inc.,
2015.

[8] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” in Present and ulterior software engineering. Springer, 2017, pp.
195–216.

[9] A. Taherkordi and P. Herrmann, “Pervasive smart contracts for
blockchains in iot systems,” in Proceedings of the 2018 International
Conference on Blockchain Technology and Application, 2018, pp. 6–11.

[10] M. Atzori, “Blockchain technology and decentralized governance: Is the
state still necessary?” SSRN, 2016.

[11] M. A. Cyran, “Blockchain as a foundation for sharing healthcare data,”
Blockchain in Healthcare Today, 2018.

[12] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, and
D. I. Kim, “A Survey on Consensus Mechanisms and Mining Strategy
Management in Blockchain Networks,” IEEE, 2019.

[13] R. Böhme, N. Christin, B. Edelman, and T. Moore, “Bitcoin: Economics,
technology, and governance †,” Journal of Economic Perspectives,
vol. 29, pp. 213–238, 05 2015.

[14] M. Alharby and A. van Moorsel, “Blockchain-based smart contracts: A
systematic mapping study,” Computer Science Information Technology,
2017.

[15] R. Tonelli, M. I. Lunesu, A. Pinna, D. Taibi, and M. Marchesi,
“Implementing a microservices system with blockchain smart contracts,”
in 2019 IEEE International Workshop on Blockchain Oriented Software
Engineering (IWBOSE). IEEE, 2019, pp. 22–31.

[16] E. Evans, Domain-driven design : tackling complexity in the heart of
software, 1st ed. Addison-Wesley, 2014.

[17] H. Vural, M. Koyuncu, and S. Guney, “A systematic literature review on
microservices,” Computational Science and Its Applications – ICCSA,
2017.

[18] D. A. da Silva, F. Kfouri, S. C. dos Santos, L. H. Coura, W. Cristoni,
G. S. Goncalves, L. G. dos Santos, J. C. O. Junior, B. M. R. da Fonseca,
J. C. L. Costa et al., “Urgent and emergency care: an academic
application system case study,” in 16th International Conference on
Information Technology-New Generations (ITNG 2019). Springer, 2019,
pp. 143–152.

[19] H. Dai, H. P. Young, T. J. Durant, G. Gong, M. Kang, H. M. Krumholz,
W. L. Schulz, and L. Jiang, “Trialchain: A blockchain-based platform
to validate data integrity in large, biomedical research studies,” arXiv
preprint arXiv:1807.03662, 2018.

[20] D. Nagothu, R. Xu, S. Y. Nikouei, and Y. Chen, “A microservice-enabled
architecture for smart surveillance using blockchain technology,” in 2018
IEEE International Smart Cities Conference (ISC2). IEEE, 2018, pp.
1–4.

[21] B. Ramesh, L. Cao, and R. Baskerville, “Agile requirements engineering
practices and challenges: an empirical study,” Information Systems
Journal, vol. 20, no. 5, pp. 449–480, 2010.

[22] S. K. Lo, X. Xu, Y. K. Chiam, and Q. Lu, “Evaluating suitability
of applying blockchain,” in 2017 22nd International Conference on
Engineering of Complex Computer Systems (ICECCS). IEEE, 2017,
pp. 158–161.

[23] A. Dyck, R. Penners, and H. Lichter, “Towards definitions for release
engineering and devops,” in 2015 IEEE/ACM 3rd International Work-
shop on Release Engineering. IEEE, 2015, pp. 3–3.

[24] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

129

Authorized licensed use limited to: Auckland University of Technology. Downloaded on May 26,2020 at 09:13:24 UTC from IEEE Xplore. Restrictions apply.

