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Abstract—Complex legal agreements enable many real-world
applications, from data sharing systems to financial transactions.
However, legal expenses scale with complexity because of the
manual processes to draft, revise, and enforce agreements. To
reduce such costs, we propose a new framework for lawyers to
develop machine readable legal agreements, which are automat-
ically verified and deployed on the Ethereum blockchain. Specif-
ically, our framework introduces domain specific repositories to
store human and machine readable legal language, a web inter-
face and Python API to draft legal agreements, correctness check-
ing via formal verification, and a voting system for blockchain
based adjudication. Experimental evaluation found that our
proposed framework offers an efficient verification system, incurs
linear scaling of Ethereum blockchain gas consumption in terms
of agreement size, and correctly models 81% of conditions in real-
world agreements through the domain specific repositories. These
results suggest a practical approach for developing verifiable and
blockchain compatible legal agreements.

Index Terms—Ethereum blockchain smart contracts, machine
readable legal agreements, formal verification

I. INTRODUCTION

Formal legal contracts govern many real-world applications,
ranging from data sharing systems to complex financial trans-
actions. For all types of agreements, lawyers employ similar,
manual drafting and revision processes. When disputes arise,
lawyers must re-read agreements to present arguments for
settlement or trial. Each of these manual steps during creation,
validation, and enforcement of an agreement incurs significant
legal fees for lawyers’ time. Moreover, no manual check will
catch all errors, and inadequate agreements resulted in multi-
million dollar lawsuits [1], [2].

While some have attempted to use natural language process-
ing to automatically interpret legal agreements, such systems
are limited to certain legal domains [3] and are not focused on
detecting errors or easing with litigation. Computer systems
cannot extract the logic from text based legal agreements.
This limitation prevents automation of legal processes, and
by extension, significant reduction of legal expenses.

We introduce a new framework that aims to reduce the time
and cost of drafting, checking, and resolving disputes. Our
framework, through its web interface and Python API, enables
lawyers to write agreements by importing customizable pieces
of legal language from repositories. Studies have shown that
similar language is in more than 60% of agreements in the

same domain [4]. Our repositories store language in human
and machine readable forms as text templates and combina-
tional logic, respectively.

Our framework uses formal verification to check legal
agreements. Formal verification can both identify unintended
loopholes and prove that intended uses cases are permissible.
For example, in a data sharing agreement, the data provider
could ensure that, under all circumstances, there is no loophole
that allows data to be used for marketing purposes without end
user consent. Likewise, the data recipient can prove that there
exists a procedure to use end user data for marketing purposes.

Our framework converts the machine readable representa-
tion of agreements into SMT-LIBv2 for formal verification via
Z3 [5] and Vyper [6] for Ethereum blockchain smart contract
deployments [7]. Unlike traditional text based agreements, our
smart contract legal agreements include a dispute resolution
mechanism. This system simplifies the adjudication process,
thereby lowering enforcement costs.

We evaluated the framework on randomly generated agree-
ments and sample data sharing agreements in terms of formal
verification performance, Ethereum blockchain gas consump-
tion, and empirical applicability. These metrics measure the
scalability of our framework with respect to agreement size
and the ability to represent real-world legal agreements.

Section II describes works similar to our framework. In Sec-
tion III, we detail the implementation. In section IV, we eval-
uate formal verification performance, Ethereum blockchain
gas consumption, and empirical applicability on randomly
generated agreements and sample data sharing agreements.

II. RELATED WORK

Our framework spans document assembly, formal verifi-
cation, structured representations for legal agreements, and
blockchain based adjudication. We could not identify any
other single system that integrates these four domains into
one unified framework.

A. Document Assembly

Document assembly systems use interview responses to
populate templates to generate unique documents. While these
systems are popular among legal professionals [8], [9], there
are significant issues with agreements generated through doc-
ument assembly that have not undergone manual legal counsel978-1-7281-6680-3/20/$31.00 ©2020 IEEE
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review [10]. As such, these systems only reduce drafting costs,
not verification nor enforcement expenses.

Our framework incorporates the benefits of document as-
sembly by providing repositories to store customizable le-
gal language in both human and machine readable forms.
Moreover, our framework automatically verifies the machine
readable representation to eliminate drafting errors.

B. Formal Verification
Formal verification verifies the functionality of determin-

istic systems through mathematical proofs. Precision critical
systems, such as those in aerospace or defense, employ this
technique to detect and eliminate design errors [11].

As errors in legal agreements can also incur significant
repercussions, our framework employs formal verification to
validate agreements. We use the Z3 prover developed by
Microsoft Research [5]. Given a logical statement, Z3 returns
either a combination of inputs to satisfy the logical statement
or a proof that no such combination of inputs exists.

C. Structured Representation of Legal Agreements
Existing projects, such as Ergo, model legal agreements as

software programs by embedding machine readable functions
inside legal clauses [12]. Ergo provides a repository of clauses
that users can import into their agreements, and it supports Coq
[13] for formal verification. Unlike Ergo, which focuses on
representing the commonly used parts of a legal agreement via
a functional programming language, our framework models
the entire agreement via combinational logic and thus can
formally verify the entire agreement.

Others have attempted to use natural language processing
(NLP) on legal agreements. Such systems are generally limited
to specific domains of legal documents, such as leases [3],
and to information retrieval [14], [15]. As formal verification
requires a highly structured representation, current NLP tech-
niques would not be able to satisfy the requirements for our
framework. As such, our framework does not currently support
generating the machine readable representation via NLP.

D. Blockchain Adjudication
Studies have noted the importance of allowing human

judgment to serve as inputs to programs that represent legal
agreements [16]. For example, while it may be trivial to
calculate late fees, it is difficult to calculate a monetary
award for emotional damages. Our framework addresses these
concerns by supporting user specified inputs. Should the users
disagree on the appropriate value for such inputs, they can
invoke our framework’s blockchain based adjudication.

We incorporate our earlier work [17], which proposed a
method for adjudicating disputes via an Ethereum blockchain
smart contract. During creation of the smart contract, both
parties agree on a set of arbiters. Should a dispute arise, the
pre-selected arbiters can vote, within a specified time period,
either yes or no on whether a breach occurred. Should a
minimum number of arbiters vote, and the majority of those
who voted agree that a breach occurred, the smart contract can
automatically enforce monetary penalties.
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Figure 1: System architecture. Lawyers import legal language
from repositories to draft agreements. Our framework con-
verts agreements to SMT-LIBv2 for formal verification via
Z3. Verified agreements are exported to Vyper for Ethereum
blockchain smart contract deployments.

III. IMPLEMENTATION

A. Legal Language Repositories

Our framework stores legal language as both text templates
and machine readable combinational logic in repositories.
Combinational logic reduces Boolean inputs, through logical
connectives, into a single Boolean output. We refer to the
Boolean inputs as actions, and the logical connectives as
clauses. Both actions and clauses are stored in the repositories.

Actions are inputs to an agreement and must resolve to a
Boolean value (true or false). They represent whether a
specific event occurred; for example, in data sharing agree-
ments, an action could be whether the data was shared. In
the repositories, actions contain a text template describing the
event (e.g. “{party a} shared {data type} with {party b}”)
and a default state (e.g. false). When instantiated, the
lawyers must provide parameters to populate the text template,
a list of parties who can update the state of the action, and
a list of independent arbiters who can adjudicate disputes.
When deployed as an Ethereum blockchain smart contract,
the parties can propose updates to the state of any action. The
other parties, and arbiters in the case of a disagreement, vote
to decide whether to update the action state. The design of an
action was based on concerns raised in [16] that some inputs
into programmatic agreements require human judgment.

Clauses use deterministic combinational logic to resolve
combinations of actions or other clauses (recursively) to a
single Boolean output. Unlike actions, clauses are not dis-
putable. However, disputing and changing the state of an action
contained within a clause could change the outcome of the
clause; a new outcome would propagate through the entire
contract. Each clause in a repository contains a combinational
logic implementation, a set of proofs, and a text template
description. Proofs assert that specific input values result in
the expected outcome. The natural language description is not
verified by the proofs and instead must be proofread manually.
When using a clause in an agreement, lawyers must specify
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the input actions and sub-clauses, as well as parameters for
the text template description. When verifying an agreement, a
clause’s proofs ensure that the clause does not conflict with
another clause in an agreement.

B. Agreement Drafting

Our framework presents two interfaces, a Python API and
point-and-click web frontend, in which one can write a legal
agreement. The Python interface exposes all features of the
framework. The web-based interface supports drafting an
agreement by importing clauses from the repositories, writ-
ing custom clauses, and converting agreements to Vyper for
deployment on the Ethereum blockchain. It does not support
writing custom proofs.

Behind the scenes, the Python backend powers the web
frontend. The web frontend and Python backend communicate
via JSON as suggested by [18], [19].

C. Formal Verification

Our framework verifies an agreement by recursively con-
verting the logical representation of the actions and clauses
into SMT-LIBv2, the language for the Z3 prover [5].

Each proof, which is contained within a clause in a repos-
itory or is written by the user, is checked individually by Z3.
A proof fixes the result of one or more actions or clauses and
asserts whether the overall agreement should be satisfiable.
Given these fixed values, Z3 verifies that the agreement is
either satisfiable under at least one scenario or unsatisfiable
under all scenarios [5]. Finally, the satisfiability is compared
to the expected outcome from the proof.

Discrepancies indicate that the logical implementation of
a clause is incorrect, that there might be a contradiction in
the agreement, or that, in the case of a proof written by a
user, that the logic of the agreement differs from what the
user intended to write. Note that formal verification does not
verify that the populated text templates within the clauses or
actions are correct. The prover cannot determine whether the
textual and logical representation of a clause align. One must
verify these components manually.

D. Ethereum Smart Contracts

Our framework automatically generates Ethereum
blockchain smart contracts [7] which model the underlying
legal agreements. First, agreements are converted into Vyper,
an Ethereum smart contract programming language [6]. The
Vyper compiler then generates Ethereum bytecode. This
two step process enables us to leverage the advantages of
Vyper, including its integer overflow detection and Ethereum
gas requirement calculations. These features protect against
integer and gas limit attacks [20].

To minimize Ethereum blockchain costs and preserve pri-
vacy, only the contract logic – not the textual descriptions –
are stored in the Ethereum contract. Our framework generates
a map between the original descriptions and the corresponding
state variables for off chain storage.

After deploying a smart contract, parties can propose state
updates for actions. If all other parties agree, then the state

of the action is updated. Otherwise, disagreement among the
parties starts the blockchain based adjudication process, which
is based on [17]. During the pre-voting period, other parties
can include additional actions in a dispute. This period allows
for counterclaims. After the pre-voting period, all arbiters vote
on what they believe the correct state to be for each disputed
action. Finally, all votes are tallied after the voting period.
Only if a minimum number of arbiters have voted, each action
state is updated to what a simple majority have decided the
“correct“ state to be. Note that the pre-trial period duration,
voting period duration, and arbiter quorum threshold must be
specified during compilation of the Ethereum smart contract.

The smart contract exposes the overall breach status of the
agreement via a public method named computeContract.
This function allows other smart contracts on the Ethereum
blockchain to determine whether the agreement was breached.

IV. EVALUATION

A. Metrics

We evaluated our framework in terms of formal verification
performance, Ethereum blockchain gas costs, and empirical
applicability. These metrics reflect the scalability of our frame-
work and ability to model real-world legal agreements.

B. Formal Verification Performance

As SMT formal verification is an NP-complete problem, it
is unlikely that formal verification performance can scale in
polynomial time with the number of actions in an agreement.
However, the Z3 prover incorporates optimizations for efficient
SMT solving, including Boolean constant propagation, clause
deletion, and relevancy propagation [21], to reduce the search
space. To determine the scalability of the proof mechanism, we
measured how the number of actions and clauses on randomly
generated agreements affects the execution time of Z3.

We randomly generated 150 agreements containing a vari-
able number of two party, three arbiter actions and AND,

3 14 26
Action count

0.0

0.1

0.2

T
im

e 
(s

)

10 clauses
20 clauses
30 clauses

9 36 63
Clause count

0.0

0.1

0.2

T
im

e 
(s

)

10 actions
20 actions
30 actions

Figure 2: Formal verification performance. The above charts
illustrate how the number of actions (left) and clauses (right)
affect the time required by Z3 to verify 150 randomly
generated agreements. The number of actions and clauses
respectively resulted in a correlation of r = 0.97 and r = 0.86
with the time performance of Z3. These results illustrate the
more significant impact on prover performance from each
action, or free variable, which increases the search space.
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Method Gas Consumption
File a Dispute 91,412
Add a Counterclaim 108,939
Vote 41,611

Table I: Gas consumption for fixed cost methods. Our
implementation uses constant time methods, independent of
agreement size, to file a dispute, add counterclaims to a
dispute, and vote on a dispute. These figures were reported
by the Vyper compiler.

Method Marginal Gas Consumption for Each
Party Arbiter Action Clause

Deploy Contract 24,336 1,720 192,872 12,769
Compute Breach
Status

0 0 0 432

Close Dispute 0 0 93,980 0

Table II: Gas consumption for variable cost methods. The
above table shows the marginal gas costs incurred for each
party, arbiter, action, and clause in a contract. We obtained
these results by randomly generating 250 agreements and per-
forming linear regressions. Web3 [24] provided gas estimates
for contract deployment, and the Vyper compiler [6] provided
upper-bound gas limits for contract methods. All regressions
had R2 ≥ 0.99.

OR, and NOT clauses. In addition, we generated another 100
one-action, one-clause agreements with between 10 and 100
parties and arbiters. For each randomly generated agreement,
we measured the execution time of Z3 via Python’s timeit
library [22]. Data was collected on Amazon Web Services
dual core Intel Xeon E5-2666 v3 Haswell machines (instance
type c4.large) [23] running Ubuntu Linux 18.04. Figure
2 illustrates how verification time scales with the number of
actions and clauses.

C. Blockchain Costs

Executing instructions, reading from, and writing to the
Ethereum blockchain require gas, which is used to reward the
Ethereum blockchain miners. Lower gas consumption incurs
lower real-world costs. The amount of gas consumption is
independent of the market price of Ethereum.

We measured how the number of parties, arbiters, actions,
and clauses on randomly generated agreements affected gas
costs for deployment onto the Ethereum blockchain and for
dispute adjudication. The Web3 framework [24] provides
estimates for the gas needed to deploy a smart contract, and the
Vyper compiler provides upper bound gas limits for contract
methods [6]. Results are shown in I and II.

D. Empirical Applicability

We measured the empirical applicability of our framework
by evaluating sample agreements freely available online [25],
[26]. We designed actions and clauses for our repositories such
that the logical representation matches our interpretation from
the original agreements.

From these agreements, we identified 93 actions and
clauses, with 31 from [25] and the remaining 62 from [26].

Out of these 93 actions and clauses, only 21 were distinct (i.e.
excluding repetitions). Of these 21, we successfully modeled
17 (81%) in our framework. For these 17 we could model and
add to our repositories, each was used on average 4.5 times,
with the “Share Data Action” being most commonly used with
16 repetitions. Considering we evaluated our framework on
data sharing agreements, it is unsurprising that the “Share
Data Action” was the most commonly used. The level of
repetition for this action and others, both within an individual
agreement and between agreements, shows the effectiveness
of the repositories.

However, of the 21 clauses, four (19%) were incompatible
and represent the limitations of our framework. Specifically,
our framework cannot cleanly model repeating events, for-each
statements, and changes to the parties and arbiters. These types
of legal constructs were found in the evaluated agreements.
For-each statements would enable the modeling of infinitely
repeating events. For example, in the context of data sharing
agreements, the imposition of penalties for each data breach
cannot be accurately modeled through our current framework.
Finally, agreements generated through our framework require
the explicit names and Ethereum addresses of all parties and
arbiters to be specified at compile time. Should the parties
change after the agreement is created, a new contract would
have to be deployed. However, external smart contracts can
proxy the parties and arbiters. These contracts could then
delegate voting authority to real parties and arbiters.

V. CONCLUSION

Our framework enables lawyers to use a web interface to
write legal agreements that can be automatically verified via
formal verification and deployed on the Ethereum blockchain
for lower adjudication costs when disputes arise. Storing legal
language in repositories enables reuse of human and machine
readable legal language across agreements. By having both a
web interface and a Python API, our framework is accessible
to both legal professionals and software developers alike.
We aim to reduce the manual work involved with drafting,
checking, and enforcing complex agreements.

The evaluation indicates that the framework, through com-
binational logic, can accurately model 81% of legal constructs
found in real-world agreements. The formal verification run-
time and blockchain gas costs for generated agreements scale
linearly with agreement complexity. These results suggest a
practical approach for developing verifiable and blockchain
compatible legal agreements.

Future work includes extending our framework to support
for-each type statements and integer inputs. These improve-
ments would enable our framework to model more types of
agreements. In addition, we are interested in performing an
end user evaluation among legal processionals. Our current
evaluation has focused on the performance and expressivity of
our framework. User testing would enable us to validate our
underlying hypothesis that machine readable legal agreements
would reduce time and costs needed to draft, check, and
enforce contracts.
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