
Blockchain-oriented Software Engineering:
Challenges and New Directions

Simone Porru, Andrea Pinna

University of Cagliari

Department of Electrical and Electronic Engineering

[simone.porru, a.pinna]@diee.unica.it

Michele Marchesi, Roberto Tonelli

University of Cagliari

Department of Informatics and Mathematics

marchesi@unica.it, roberto.tonelli@dsf.unica.it

Abstract—In this work, we acknowledge the need for soft-
ware engineers to devise specialized tools and techniques for
blockchain-oriented software development. Ensuring effective
testing activities, enhancing collaboration in large teams, and
facilitating the development of smart contracts all appear as key
factors in the future of blockchain-oriented software develop-
ment.

Keywords-blockchain; software engineering; smart contracts;
cryptocurrencies;

I. INTRODUCTION

In the past years, a lot of attention has been paid to the

emerging concepts of blockchain and smart contract. Some

observers are even talking of the dawn of a new era [1] and

about the potential of reshaping the current financial services

technical infrastructure [2] [3]. Ever since digital currencies

started to represent a real monetary value, also hacks and

attacks started. The biggest was the MtGox attack and another

remarkable exploit was that sustained by the DAO organization

in June 2016. Concerning software development, the scenario

is that of a sort of competition first-come-first-served which

does not assure neither software quality, nor that all the basic

concepts of software engineering are taken into account.

This paper aims at revealing the current issues and new

directions for blockchain-oriented software engineering, and

investigates the need for novel specialized software engineer-

ing practices for the blockchain sector. To this purpose, we:

1) identified the most relevant challenges for the state-of-

practice blockchain-oriented software engineering;

2) highlighted peculiarities of some of the most popular

blockchain-oriented software projects going on in the

world;

3) proposed new research directions for blockchain-

oriented software engineering, based on the results ob-

tained from the previous steps.

II. BLOCKCHAIN-ORIENTED SOFTWARE ENGINEERING:

CHALLENGES

We define as blockchain-oriented Software (BOS) all soft-

ware working with an implementation of a blockchain. A

blockchain is a data structure characterized by the following

key elements:

• data redundancy (each node has a copy of the

blockchain);

• check of transaction requirements before validation;

• recording of transactions in sequentially ordered blocks,

whose creation is ruled by a consensus algorithm;

• transactions based on public-key cryptography;

• possibly, a transaction scripting language.

Considering the distinctive marks of a blockchain, software

engineers could benefit from the application of BOS-specific

software engineering practices. Such practices would consti-

tute the base of a blockchain-oriented Software Engineering

(BOSE). We identify the most relevant BOSE challenges, and

the issues which originate from them. To this purpose, for most

challenges, we also provide excerpts from the SWEBOK [4].

to properly frame the related issues.

New professional roles. ”A recognized profession entails
specialized skill development and continuing professional ed-
ucation” Due to the business-critical nature of the blockchain,

finance and legal subjects have shown increasing interest

toward BOS. At the same time, bootcamps for blockchain

developers are flourishing. The blockchain sector will need

professional figures with a well-defined skills portfolio com-

prising finance, law, and technology expertise. An example of

a new role could be that of an intermediary between business-

focused contractors with low technology expertise and IT

professionals.

Security and reliability. ”Software Security Guidelines span
every phase of the software development lifecycle” and ”Soft-
ware Reliability Engineered Testing is a testing method encom-
passing the whole development process”. A blockchain must

guarantee data integrity and uniqueness to ensure blockchain-

based systems are trustworthy which, in the case of BOS, is

that of security-critical systems. In particular, there is a need

for testing suites for BOS. These suites should include:

• Smart Contract Testing (SCT), namely specific tests for

checking that smart contracts i) satisfy the contractors’

specifications, ii) comply with the laws of the legal

systems involved, and iii) do not include unfair contract

terms.

• Blockchain Transaction Testing (BTT), such as tests

against double spending and to ensure status integrity

(e.g. UTXO1).

1Unspent Transaction Output

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

DOI 10.1109/ICSE-C.2017.142

169

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.142

169

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.142

169

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.142

169

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.142

169

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.142

169

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.142

169

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.142

169

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.142

169

2017 IEEE/ACM 39th IEEE International Conference on Software Engineering Companion

978-1-5386-1589-8/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-C.2017.142

169

Software architecture. Specific design notations, macroar-

chitecture patterns, or meta-models may be defined for BOS

development. To this purpose, software engineers should de-

fine criteria for selecting the most appropriate blockchain

implementation, evaluating the adoption of sidechain tech-

nology, or the implementation of an ad-hoc blockchain. For

example, Ethereum2 has adopted a key-value store, which is

a very simplistic database. By adopting a higher level data

representation such as an Object Graph, it would be possible to

speed up many operations which would otherwise be expensive

using a key-value store [5].

Modeling languages. Blockchain-oriented systems may re-

quire specialized graphic models for representation. More

specifically, existing models might also be adapted to BOS.

UML diagrams might be modified or even created anew to

account for the BOS specificities. For example, diagrams

such as the Use Case Diagram, Activity Diagram, and State

Diagram could not effectively represent the BOS environment.

Metrics. BOSE may benefit from the introduction of spe-

cific metrics. To this purpose, it could be useful to refer

to the Goal/Question/Metric (GQM) method, that was orig-

inally intended for establishing measurement activities, but

that can also be used to guide analysis and improvement of

software processes [4] [6] [7]. Due to the distributed nature

of the blockchain, specific metrics are required to measure

complexity, communication capability, resource consumption

(e.g. the so-called gas in the Ethereum system), and overall

performance of BOS systems.

III. BLOCKCHAIN-ORIENTED SOFTWARE REPOSITORIES

In order to define new research directions for the BOSE

on the basis of the state-of-practice of blockchain-oriented

software, we conducted an exploratory study on a corpus

comprising 1184 GitHub software repositories, which were

identified with the use of the Moody’s blockchain Report [8]

and CoinMarketCap3.

We define a BOS project as a software project which

contributes to the realization of a blockchain project. This

definition includes both blockchain platforms, such as Bitcoin

and Ethereum, and general blockchain software [9]. To identify

BOS repositories we start from the corresponding blockchain

projects. Moody’s Investor Services recently identified more

than 120 publicly announced blockchain projects in an in-

depth report of the blockchain sector [8]. And we focused on

the first 17 most capitalized currencies and assets.

To focus on the most relevant repositories, we retained 193

repositories out of the initial 1184. We extracted information

on popularity (Stargazers), programming languages, commu-

nity involvement (Contributors, Open Issues, Watchers, Forks),

and age (time elapsed since creation).

We found that JavaScript, Python, Go, C++, and Ruby

are the top 5 languages, with BOS JavaScript repositories

accounting for more than 30% of the total. The number of

2https://www.ethereum.org/
3https://coinmarketcap.com/

Java repositories don’t reach the 4% of the total. The top 10

BOS repositories were created around 4 years ago on average,

and most of them have a considerable number of open issues.

The statistics about forks are staggering, topping at 4266 for

the main bitcoin repository, followed by the Go repository

from Ethereum with 695 forks.

IV. NEW RESEARCH DIRECTIONS

We hereby suggest some new research directions for BOSE.

Testing. A recent study on over 50000 GitHub projects [10]

has proved that a bigger team size leads to a higher number

of test cases, whereas the number of test cases per developer

decreases with an increase in the team size. It would be

interesting to investigate whether the same can be said about

BOS, considering that the most popular repositories have an

unusually high number of contributors, even for open-source

projects.

Collaboration. The high number of voluntary contributors tes-

tifies to the attractiveness of BOS in the open source landscape.

A large base of voluntary contributing members has been

shown to be a pivotal success factor in OSS evolution [11]. To

achieve sustainable development and improve software quality,

specific practices to enhance the synergy between the system

and the community would be highly beneficial to BOSE [12].

Enhancement of testing and debugging A number of

programming languages such as Go, Python, and Ruby are

gaining increasing popularity among BOS projects. This arises

the need for enhanced testing and debugging suites, since bugs

are ubiquitous in software systems [13] [14], tailored upon the

most popular BOS languages. Indeed, Java testing suites have

undergone much more testing than Go. In addition, as BOS

projects work with the blockchain, which is distributed by

definition, testing in isolation would require properly mocking

objects capable of effectively simulate the blockchain.

Creation of software tools for smart contract languages.
The implementation of Smart Contract Development Environ-

ments (SCDEs)–the blockchain-oriented declination of IDEs–

might be pivotal for the building and diffusion of BOS

expertise. Such environments could streamline smart contract

creation through specialized languages (e.g. Solidity, a lan-

guage designed for writing contracts in Ethereum).

V. CONCLUSION

In the present work, we highlighted the most evident issues

of state-of-art blockchain-oriented software development, by

advocating the need for new professional roles, enhanced secu-

rity and reliability, novel modeling languages, and specialized

metrics. In addition, we used the 2016 Moody’s blockchain

Report and the market capitalization of cryptocurrencies to

build a dataset of blockchain-oriented software repositories.

On the basis of the results of the analysis, we proposed

new directions for blockchain-oriented software engineering,

focusing on collaboration among large teams, testing activities,

and specialized tools for the creation of smart contracts.

170170170170170170170170170170

REFERENCES

[1] M. Swan, Blockchain: Blueprint for a new economy. O’Reilly Media,
Inc., 2015.

[2] Unicredit, “Blockchain technology and applications from a financial
perspective,” 2016.

[3] F. Aymerich, G. Fenu, and S. Surcis, “A real time financial system based
on grid and cloud computing,” in Proceedings of the ACM Symposium
on Applied Computing, 2009, pp. 1219–1220.

[4] A. Abran, J. W. Moore, P. Bourque, R. Dupuis, and L. Tripp, “Swebok:
Guide to the software engineering body of knowledge 2004 version,”
IEEE Computer Society, Los Alamitos, California, 2004.

[5] D. Larimer, “Introducing bitshares object graph.” [Online]. Available:
https://goo.gl/TWWSif. Accessed on 2016-10-20.

[6] M. Concas, G.and Marchesi, G. Destefanis, and R. Tonelli, “An em-
pirical study of software metrics for assessing the phases of an agile
project,” International Journal of Software Engineering and Knowledge
Engineering 22(4), pp. 525–548, 2012.

[7] G. Concas, M. Marchesi, A. Murgia, S. Pinna, and R. Tonelli, “Assessing
traditional and new metrics for object-oriented systems,” in Proceedings
of the 32th International Conference on Software Engineering 2010,
2010, pp. 24–31.

[8] N. Caes, R. Williams, E. H. Duggar, and M. R. Porta, “Robust, cost-
effective applications key to unlocking blockchain’s potential credit
benefits,” 2016.

[9] G. Hileman, “State of blockchain q1 2016,” 2016. [Online]. Available:
http://www.coindesk.com/state-of-blockchain-q1-2016/

[10] P. S. Kochhar, T. F. Bissyandé, D. Lo, and L. Jiang, “Adoption of
software testing in open source projects–a preliminary study on 50,000
projects,” in Software Maintenance and Reengineering (CSMR), 2013
17th European Conference on. IEEE, 2013, pp. 353–356.

[11] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, and Y. Ye,
“Evolution patterns of open-source software systems and communities,”
in Proceedings of the international workshop on Principles of software
evolution. ACM, 2002, pp. 76–85.

[12] M. Aberdour, “Achieving quality in open-source software,” IEEE soft-
ware, vol. 24, no. 1, pp. 58–64, 2007.

[13] H. Zhang, “On the distribution of software faults,” in IEEE Transactions
on Software Engineering 34 (2), 2008, pp. 301–302.

[14] M. Concas, G.and Marchesi, A. Murgia, R. Tonelli, and I. Turnu, “On
the distribution of bugs in the eclipse system,” in IEEE Transactions on
Software Engineering 37 (6), 2011, pp. 872–877.

171171171171171171171171171171

