
Received May 15, 2019, accepted June 3, 2019, date of publication June 10, 2019, date of current version June 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2921936

A Massive Analysis of Ethereum Smart Contracts
Empirical Study and Code Metrics
ANDREA PINNA 1, SIMONA IBBA1, GAVINA BARALLA1, ROBERTO TONELLI2,
AND MICHELE MARCHESI2, (Member, IEEE)
1Department of Electric and Electronic Engineering (DIEE), University of Cagliari, 09123 Cagliari, Italy
2Department of Mathematics and Computer Science, University of Cagliari, 09124 Cagliari, Italy

Corresponding author: Andrea Pinna (a.pinna@diee.unica.it)

This work was supported in part by Regione Autonoma della Sardegna, under projects ‘‘EasyWallet’’-POR FESR Sardegna 2014–2020 and
‘‘CAFCha-Certification of AgriFood Chain’’-POR FESR Sardegna 2014–2020.

ABSTRACT In this work, we perform a comprehensive empirical study of smart contracts deployed on the
ethereum blockchain. The objective of the analysis is to provide empirical results on smart contracts features,
smart contract transactions within the blockchain, the role of the development community, and the source
code characteristics. We collected a set of more than 10 000 smart contracts source codes and a dataset of
meta-data regarding their interaction with the blockchain from etherscan.io. We examined the collected data
computing different statistics on naming policies, smart contract ether balance, number of smart contract
transactions, functions, and other quantities characterizing the use and purpose of smart contracts. We found
that the number of transactions and the balances follow power-law distributions and the software codemetrics
display, on average, values lower than corresponding metrics in standard software but have high variances.
Focusing the attention on the 20 smart contracts with the topmost number of transactions, we found that most
of them represent financial smart contracts and some of them have peculiar software development stories
behind them. The results show that blockchain software is rapidly changing and evolving and it is no longer
devoted only to cryptovalues applications but to general purpose computation.

INDEX TERMS Blockchain, code metrics, ethereum, smart contracts, solidity.

I. INTRODUCTION
The publication of the Ethereum white paper in 2014 [4]
and the implementation of the Ethereum platform moved the
blockchain technology [20] to the second generation. In fact,
what this platform for decentralized applications proposed,
was new and disruptive: a blockchain-based programmable
Turing complete virtual machine to run software code writ-
ten specifically for the blockchain environment [24]. Such
software was originally conceived to take advantage of the
blockchain features in order to automatically implement the
constraints two parties can agree upon when they sign a
contract in a trustless environment, so that the software code
was named ‘‘Smart Contract’’. Nowadays, the initial concept
has been largely extended so that Smart Contracts can be
considered as general purpose software programs, as we show
in our empirical analysis.

Smart Contracts (SCs for short) are small computer pro-
grams stored inside the Ethereum public ledger (or inside

The associate editor coordinating the review of this manuscript and
approving it for publication was Sun Junwei.

another blockchain) and associated to a particular blockchain
address which references the SC software code.

Ethereum Smart Contracts are mainly written in Solidity,
a programming language derived from Javascript, Python
and C++, which allows to run programs on the blockchain
infrastructure as decentralized applications. The Smart Con-
tracts code is compiled and the corresponding bytecode is
recorded into the blockchain and run by the Ethereum Vir-
tual Machine (EVM). Virtually, SCs can perform any com-
putational task standard programs can perform, but there
are specific constraints that must be respected due to the
decentralized structure of the blockchain and to the consensus
protocol adopted by Ethereum, so that SCs display specific
features and issues which are unknown in traditional soft-
ware development. A typical example is the extraction of a
pseudo-random number which should be replicated in all the
blockchain nodes in order to obtain the same result [13].

Due to these specific features, this technology is having
a great success and has paved the way for a new set of
applications, yet to be fully exploited. Ethereum is the most
important blockchain based platform in terms of number

78194
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-7530-0521

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

of transactions. At time of writing the number of accounts
stored in the blockchain is higher than sixty millions. The
number of contract created in the blockchain is over fourteen
million five hundred thousand1 Contract accounts are used
both to create decentralized applications and to create new
digital tokens, looking to new business opportunities and to an
easier way of funding (the ICO phenomenon [10], [11]). The
byte-codes of contracts are always available, because they
are recorded in the blockchain. However, byte-codes are not
intelligible; in order to increase the trust of users, developers
of decentralized applications may provide the source code
of their contracts. Third party websites, like Etherscan.io,
offer a verification service that makes Smart Contracts source
code public. The overall success of decentralized applications
presents practitioners and software engineers with new and
specific challenges. In the scenario of a wide diffusion of the
blockchain technology, Smart Contracts could represent the
backbone for several future decentralized applications [12],
[14], [15], [20].

Since blockchain is a newborn technology, the develop-
ment of new decentralized applications could take advan-
tage of a thorough analysis of what has been created up
to now, with the aim of analyzing errors of the past and
of improving software development best practices. By the
end of 2017 the amount of Smart Contract source code
freely available and the number of related transactions on the
Ethereum blockchain reached a size which allows a system-
atic empirical and statistical study.

In this study we analyze some source code features and
different Smart Contracts code measures, the evolution of
the Solidity language, and other features relating Smart
Contract source code to the transactions performed on the
Ethereum blockchain. Such an empirical analysis would
have been an impossible task just a few months before the
time of our study because of the scarcity of Smart Con-
tracts source code available deployed on the blockchain and
for the contemporary scarcity of statistics related to the
operations and interactions among Smart Contracts and the
blockchain.

The purpose of our work is to empirically analyze and
characterize the interaction between Smart Contracts and
blockchain, in terms of software measures, of EVM compiler
version, of developers practices, of Solidity language features
and other peculiarities of the blockchain environment and to
examine themain software characteristics of contracts written
in solidity as well as their purposes. Furthermore, thanks
to the availability of Smart Contracts written and deployed
at different times, we analyzed some of the evolutionary
features of the Solidity programming language and of the way
developers write Smart Contracts.

Our study aims at understanding software features and
metrics of Smart Contracts, in order to measure progress and
performance during the evolution of the Ethereum blockchain
technology in these first years.

1data from https://stat.bloxy.info.

To lead our research we performed an empirical study
collecting the dataset of all Smart Contracts source codes
available from Etherscan.io up to the beginning of 2018.
We computed several software metrics on the entire dataset
and identified the twenty most used Smart Contracts, in terms
of blockchain transactions, representing a reduced set on
which we performed a systematic and more detailed analy-
sis, in terms of both functionality and development history.
We identified some empirical indicators useful to characterize
Smart Contracts from a statistical point of view. By means of
these indicators we studied the usage of Smart Contracts in
the Ethereum blockchain and their evolution over time.

Results lead us to observe an active developer community
that constantly follows the evolution of the language that
develops more and more specialized Smart Contracts and
improves contracts already developed. In general code mea-
sures show that Smart Contracts have a limited number of
lines of code which are well commented and that implement
specific functionalities.

The remaining of the paper is organized as follows:
Section II provides a selection of related work in the field
of Smart Contract analysis and metrics applied to specific
software categories. Section III provides a description of
the Solidity language and of the Ethereum environment.
Section IV describes the dataset and the results of the analysis
in terms of contract name, compiler version, balance and
transactions, and of the measure of source codes, such as the
number of line of code, the number of contract declarations
and the related size of the bytecode. Section V analyzes
twenty Smart Contracts, selected from the dataset with the
highest number of transactions. First it provides a descrip-
tion of each contract, then it describes the interaction of
the development community in terms of number of versions
and of reuse of code. Finally the section reports the results
of the code analysis performed by means of volume and
complexity code metrics. Section VI discusses the findings of
this work, summarizing results and providing some consider-
ations derived from them. Section VII concludes the paper.

II. RELATED WORKS
Research literature on blockchain in general and on Smart
Contracts in particular, from a software development per-
spective is limited to the last few years. The development
and the diffusion of ‘‘Solidity’’ as programming language
for writing Smart Contracts on the Ethereum platform started
very recently and the definition and implementation of the
language and of its Virtual Machine on Ethereum (EVM) is
still ongoing.

In this section we provide an overview of the more recent
findings in the field with a glimpse to the specific domain
of Smart Contracts programming and related topics already
published in software literature.

Only very recently the research on software engineering
and computer science paid particular attention to the
blockchain technology and its specificities. In 2017,
Porru et al. [18] underline the need of a new branch

VOLUME 7, 2019 78195

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

of software engineering, and coined the term BOSE
(Blockchain-oriented software engineering) to deal with this
new technology. In this context, authors highlighted the need
of new professional roles, new specialized metrics and new
modeling languages in order to ensure security and reliability.
They designed possible solutions proposing the directions for
future specific steps of the BOSE.

Bartoletti and Pompianu [2] conducted a survey of Smart
Contracts by studying their usage, development platforms and
design patterns. Furthermore, they categorized the contracts
by their application domain in order to understand the best
convenient investment.

Tonelli et al. [22] analyzed more than 12000 certified
Smart Contracts provided by Etherscan, along with Bytecode
and ABI. Their results report that metrics are less variable
than in traditional software systems because of the domain
specificity. Furthermore in Smart Contract software metrics
there are no large variations from the mean. All values are
generally within a range of few standard deviations from the
mean.

In order to define a specific Blockchain Software Engi-
neering, Destefanis et al. [9] argue that Smart Contracts have
a non-standard software life-cycle and therefore applications
can hardly be updated or it is more difficult to release a new
version of the software.

Wan et al. [23], in order to design efficient tools to detect
and prevent bugs within the blockchain, performed an empir-
ical study to understand the blockchain bug characteristics.
They investigated the bugs frequency distribution manually
examining 1108 bugs in eight open source blockchain.

Bragagnolo et al. [3] presented SmartInspect, a tool able
to debug the code of a Smart Contract, addressing the lack
of inspectability of a deployed code. In fact, once a Smart
Contract is deployed, data are encoded and the source code
cannot be redeployed. Authors proposed a solution by ana-
lyzing the contract state through a decompilation techniques
and a mirror-based architecture without redeployed it.

Rocha et al. [8] implemented a tool to handle Smart Con-
tract written in Solidity language, the solution is specifically
designed for Pharo (a live programming environment based
on Smalltalk code language).

Norvill et al. [17] used Etherscan.io in order to explore
Smart Contracts and to analyze bytecode level metrics or to
identify similarities between compiled pieces of code. They
focused their attention on contracts compiled code, source
code, and metadata such as the contract name.

The Smart Contracts are the basis for Initial Coin Offer-
ings (ICO), the new means of crowdfunding centered around
cryptocurrency in the blockchain development area. In this
regard Fenu et al. [10] analyzed the quality and the soft-
ware development management of 1388 ICOs in the 2017.
Ibba et al. [11] they investigated on the ICO process analyzing
a dataset obtained collecting data from specialized websites.
They emphasized the advantages which Lean methodologies
could lead both to the team organization and to stakeholders
involvement.

In general the literature on Smart Contracts software fea-
tures and in particular on the Solidity programming language
is still limited and a comprehensive empirical analysis on
a dataset of thousands Smart Contracts source codes and
the metrics representing and characterizing their interaction
and usage within the Ethereum blockchain has not been
performed yet.

III. BACKGROUND
Our analysis takes into account a particular typology of
software programs called Smart Contracts, written in a pro-
gramming language specific for the EVM of the Ethereum
blockchain environment, called solidity. In this section we
provide a brief description of the Ethereum system and of
Smart Contracts.

A. THE ETHEREUM SYSTEM
Ethereum is a blockchain with an embedded Turing com-
plete computing machine. Thus computer programs can be
uploaded into the blockchain and executed on the nodes
implementing the blockchain network on a peer-to-peer com-
puter network. The nodes interact managing transactions
which are the core concept for obtaining a correct and val-
idated sequence of blocks recording and holding all the
information. Identities are associated to accounts/addresses
managed by a public-private key pair. A blockchain address
is associated with the pair. The blockchain has associated
a criptocurrency (the Ethers) in the network, which is used
as an incentive for miners and so that the accounts can
hold, send and receive criptovalue. Since the blockchain can
perform computation, the account can also contain code,
associated to a so called ‘‘smart contract’’ by means of the
blockchain address which is determined at the time the con-
tract is created. Transactions ensure that every change of state
is recorded into the public ledger representing the blocks
sequence. As a consequence accounts can be of two kinds:
External Accounts, managed by the public-private key pairs,
and Contracts Accounts, managed by the stored code. The
Ethereum Virtual Machine (EVM) deals with the two kinds
of account in the same way. Interactions among the parties
are allowed by means of transactions, made by messages sent
from one account to another and containing binary data (the
so called ‘‘payload’’), and a certain amount of cryptovalue
(Ethers). Transactions can be activated by the public-private
key pair, sending a request in broadcast to the network nodes,
or by Smart Contracts, within the same scheme, by executing
the code stored in them. This working scheme describes the
interactions affecting Smart Contracts within the blockchain
analyzed in the present work.

If the account receiving the message is a Smart Contract
then it executes the codewith the payload as input data. Trans-
actions can also create new contracts by means the operation
called Smart Contract deployment, represented in Fig. 1,
where the compiled code is passed in the payload of the
transaction and permanently stored in the blockchain,

78196 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

FIGURE 1. Deployment of an ethereum smart Contract in the blockchain.

Transactions require ‘‘Gas’’ consumption, to avoid infinite
amount of computational work to be executed and Gas is
payed in Ethers.

Other interactions may occur by Message Calls and Del-
egate Calls. These are messages sent by Smart Contracts
and have a source, a target, a payload, an amount of Ethers,
an amount of gas and return data. In Delegate Calls the code
at the target address is executed in the context of the calling
contract.

B. SOLIDITY SMART CONTRACTS
A Smart Contract is a computer program that aims to imple-
ment a logical sequence of steps according to some clauses
and rules. In a conceptual level, Smart Contracts consist of
three parts [21]:
• the code of a program that becomes the expression of a
contractual logic;

• the set of messages which the program can receive, and
which represent the events that activate the contract;

• the set of methods which activate the reactions foreseen
by the contractual logic.

Smart Contracts run in a blockchain where contract trans-
actions can be permanently recorded in a transparent envi-
ronment and are immutable. Once the Smart Contract is
deployed into the blockchain its code cannot be modified
and the clauses introduced by the parties in the contract will
obligatorily be respected because of the computational nature
of the system, as for the execution of any software program.

There are different blockchains able to run programs
implementing Smart Contracts. Even the Bitcoin blockchain
supports a limited amount of software code that can be
deployed using transaction in a blockchain address [1]. Other
examples are Hyperledger Fabric [5], the Qtum platform [7]
and the Achain platform [6].

Among all, the most popular is the Ethereum platform,
the first blockchain specifically conceived to run Smart Con-
tracts. The most popular programming language for Smart
Contracts in Ethereum is ‘‘Solidity’’. In this platform it is
possible to read some information that characterize each
Ethereum transaction. In particular, Smart Contracts are acti-
vated by messages, that are Ethereum transactions executed
by themessage sender. Currently the Ethereum platform hosts
the large majority of Smart Contracts.

As represented in Fig. 1, the process to deploy a Smart
Contract into the Ethereum blockchain is composed by three

phases. The first phase consists in the code writing in Solidity
language; the second consists in the code compiling, that can
be executed in a local environment (i.e. the remix environ-
ment2) to convert the script in the EVM bytecode [19]; and
finally the last phase consists in creating a transaction in the
blockchain, that actually deploys the contract. At the moment
of the deployment, the blockchain assigns an address to the
Smart Contract. Accessing to that address it is possible to
visualize some data of the Smart Contract like its address,
its balance, and its Application Binary Interface (ABI).

In order to avoid the possibility of EVM overload, the
execution of Smart Contract functions (when they involve
changes to blockchain records) lead to a cost in terms of
cryptocurrency. In particular, to each low level operation is
associated a computational cost (defined in units ofGas) [24].
The price in Ether of a unit of Gas is not fixed but follows the
free market rules.

Solidity is a contract-oriented, high-level language whose
definition was influenced by Object Oriented (OO) languages
like Python, C++, and especially by JavaScript.

It is a typed programming language and supports tradi-
tional types such as integer, string, array, as well as structures,
associative arrays, and enumerations.

Moreover Solidity has a specific type, the address, that
identifies users and other contracts. Each contract variable
can be interpreted as a record of a database which can be
queried and modified by calling functions of the code that
manages the database. The set of variables and their associ-
ated values represent the state of the contract. Smart Contracts
functions can be externally called by means of blockchain
transactions. In order tomake the developmentmoremodular,
specific function modifiers can be defined and associated
to different functions, for instance to perform checks in a
declarative way.

Recently different mainstream integrated development
environments (IDE’s) appeared for supporting solidity code
development, as for example IntelliJ IDEA, developed by
JetBrains and Visual Studio Code, developed by Microsoft.
We used the Intellij-Solidity plugin3 to read and compare
contracts source codes.

On the contrary there is still a lack of specific tools
for analyzing Solidity source code metrics, so that we
recurred to the similarity of Solidity with Javascript and C++
for the analysis of Solitidy source codes metrics. In fact,
an exploratory evaluation of the features of Smart Contracts
source codes can be performed using metrics and methodolo-
gies obtained adapting existing tools and designed for similar
languages.

IV. ANALYSIS OF THE SMART CONTRACTS DATASET
We performed an empirical study on 10174 Smart Contracts,
deployed in the Ethereum blockchain and validated using the
Etherscan validation service. Our dataset includes all Smart

2Available online at https://remix.ethereum.org/
3https://plugins.jetbrains.com/plugin/9475-intellij-solidity

VOLUME 7, 2019 78197

https://remix.ethereum.org/

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

Contracts uploaded until the beginning of 2018. The analysis
considers two information sets at different levels.

The first set characterizes the contract with respect to the
blockchain environment and to the interactions with it. It
is a set of parameters associated to, and defining the con-
tract state, which can be time varying. It consists of a list
containing descriptive information of each Smart Contract.
In particular, it contains the Ethereum address, the contract
name, the number of transactions performed up to data,
the compiler version and the balance of each Smart Con-
tract verified in Etherscan. We extracted all the information
from both the source code and by browsing the Ethereum
blockchain transactions related to each contract, starting from
the list of verified Smart Contract source codes provided by
etherscan.io.4

The second set characterizes software code, is fixed, and
can be viewed as independent from the blockchain envi-
ronment. It consists of a collection of 10174 ‘‘.sol’’ files
containing the contracts source code as extracted from the
Etherscan website. In fact, Etherscan provides a descriptive
page for each contract as well as the source code in sepa-
rated frames. We extracted the source code from the contract
page implementing an R script. Given a contract address,
the script loads the html of the contract page, recognizes
the start and the end of the source code, extracts and saves
it in plain text. The size of the source codes dataset is
about 100 MB.

Our empirical study first examines the two sets indepen-
dently, then compares the information collected on both.

We first analyzed the parameters that characterize the
Smart Contracts in the blockchain, aiming to provide statis-
tical information of features like the name usage, the com-
piler version, the number of transactions, and the balance of
contracts.

In the second part we characterized Smart Contracts source
codes, also by means of a statistical analysis. In particular,
we computed a set of code metrics for each Smart Contract in
the dataset and present the statistics characterizing the entire
dataset.

A. SMART CONTRACTS PARAMETERS: ANALYSIS
We evaluated the main parameters and metadata that describe
every Smart Contract in our dataset. Specifically, we focused
our attention on the contract name, the compiler version,
the number of transactions, and the contract balance in Ether.
We chose to analyze the list of contract names in order to

evaluate if the ethereum developers community uses specific
names for specific functionalities or whether the contract
name does not have particular meaning, since the contract
name is the analogous of the Class-Name in OOP.

The analysis of the compiler versions allow us to under-
stand if developers follow the continuous updating of the
language specifics, released in order to fix bugs and to provide
new and optimized functionalities.

4List available at https://etherscan.io/contractsVerified

The contract balances and the number of transactions are
two series of values characterizing contracts in terms of
usage, popularity, and in terms of funds inserted into ’that’
account. We obtained both a snapshot of the interaction of
each contract in the blockchain and an overall statistics on
their values. The number of transactions is the total num-
ber of transaction that a contract receives and sends from
normal accounts (owned by users). This number does not
include transactions sent between contracts (called internal
transactions).

All these data are public available for each Smart Con-
tract deployed in the Ethereum blockchain and verified by
Etherscan.

1) CONTRACT NAME
In the Etherscan platform, Smart Contracts are characterized
by a Contract Name. According to Etherscan specification,
the Contract Name must match the ContractName in the
source code that is deployed into the blockchain. See for
instance the contract Crowdsale inAppendixA or the contract
KittyCore in appendix C.

So we refer to Contract Name either as the name in Ether-
scan which identifies the solidity file containing the source
code or to the keyword inside the solidity file where, for
each file, there may be different contracts. In facts, according
to the language syntax, the keyword contract substitutes the
keyword class, but a contract has features similar to a class.
For example a contract can be represented as a structure
that includes a set of variables and a set of functions (these
can be public or private). But the similarity is far to be
complete: class code can be called from other classes in OOP
and methods can be called using methods and class names.
Classes can be statically coupled when a class resources to
code of another class in the system. Class names are also
chosen according to good programming practices where the
name reflects also class functionalities and purpose (eg. the
‘‘rectangle’’ class, the ‘‘point’’ class). On the contrary, some
of these features are lost in Solidity Smart Contracts and so
does the semantic of the name. The contract name looses
any ‘‘architectural compiling design’’ meaning and its meth-
ods or functions, its functionalities, are called by mean of
blockchain transactions.

As a consequence different Smart Contracts may hold the
same name and contain completely different code, or two
different Smart Contracts can be two slightly different ver-
sions of a same contract, or they may be the very same
contract deployed many times for testing purposes, or again
they can consist in part of code existing in one project and
reused in another (eg the ‘‘token’’ contract, ERC20 compliant
contracts) and so on. So it is of particular interest the analysis
of contract name occurrences to understand how Solidity
developers apply standard naming practices.

In our study we analyzed the collection of Contract Names
in our dataset and we found that among the 10174 contracts
(belonging to 10174 different addresses, only 6205 names
differ.

78198 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

TABLE 1. The 10 most used contract names.

More specifically, we found that:
• 4980 Smart Contracts have a unique Contract Name and
are deployed only one time in the blockchain: there is no
other address that holds a contract with the same name.
Therefore there is no ambiguity, the contract is identified
by the name.

• 1225Contract Names are usedmore than once (from 2 to
213 times). So that there are very popular names where
different blockchain addresses register many contracts
with identical names, but also the same contract (with
the same solidity code) multiple times.

Tab. 1 reports the list of the ten most used contract names
and shows that some contract names (eg. crowdsale, token,
ECR20Token) occur more than one hundred times.

The occurrence of the same contract namemultiple times is
due to at least three possibilities: contracts codes are identical
and the very same contract is used many times in different
accounts; contracts codes are similar for functionalities and
code metrics, but the codes differ slightly, so these are a
modification or an adaptation of the other; contracts are
completely different in code and metrics and they only share
the same name, because semantic has still a limited role in
Smart Contracts software development.

A typical example of contracts sharing common names are
contracts associated to ICOs [10]. The contract ‘‘Crowdsale’’,
(see Appendix A) belongs to this category, since its code
manages token crowdsales with different purposes and may
be easily reused in different ICOs.

In general Smart Contracts with the same contract name,
although belonging to different projects, have very similar
functionalities and metrics.

Among the 213 Smart Contracts called Crowdsale,
we found that six source codes are deployed at least twice.
One of these codes5 has 4 duplicates. This is a Smart Con-
tract with the same bytecode and identical metrics that were
subsequently memorized in the blockchain in four different
addresses.

2) COMPILER VERSION
According to [8] any Smart Contract written in Solidity has
a grammar that starts with the SourceUnit rule which con-
tains instances of a pragma directive that declares the source

5See for instance the source code of the address 0xa1877c745628
21ff59ffc0bc999e6a2e164f4d87

FIGURE 2. Example of definition of the pragma version. In the first row is
specified that in the following will be used the version 0.4.18 of solidity.

FIGURE 3. Histogram of the number of verified contracts per compiler
version.

file compiler version. It starts with the keyword ‘‘pragma’’
followed by an identifier, and then any combination of one
or more characters until a semicolon terminates the row
(see Fig. 2).

This declaration ensures that the contract does not sud-
denly behave differently with a new compiler version. In our
dataset, the latest version of the compiler is the v0.4.20 and
the most used version is the v0.4.18.

In fact Solidity is fast evolving and new features or func-
tionalities of the language are introduced from time to time,
rendering unstable the behavior of the code under different
versions. Versions may be updated when a bug is discovered
or new language constructs are needed and so on.

Fig. 3 reports the histogram of the number of verified
contracts per compiler version. There are some specific cases
that we consider useful to mention for our analysis. The only
Smart Contract with compiler v0.1.6 is developed by Piper
Merriam, the creator of Ethereum Alarm Clock (ECM) that
allows users to schedule a contract call for a specified future
block.6

There is only one contract7 that uses the version v0.1.7.
It is a Smart Contract developed by Gavin Wood, one
of the Ethereum founders and the inventor of Solidity.
V0.1.6 and v0.1.7 have been introduced in October and
November 2015 respectively. Five versions have the first
transaction verified on 24.03.2016, when the Etherscan ser-
vice was launched.

In order to understand how fast the developers acknowl-
edge the updating of the language, we collected the date of
release of the documentation (generally available on Github)
related to a new version of the pragma and compared it with

6with address 0x07307d0b136a79bac718f43388aed706389c4588
7with address 0xbF35fAA9C265bAf50C9CFF8c389C363B05753275 and

contract name wallet

VOLUME 7, 2019 78199

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

FIGURE 4. Date of release of compiler versions and the date of the first
contract activation per compiler version.

the date of the first transaction that involves a contract with
the same version of pragma. In most cases, given a compiler
version, the first transaction related to a Smart Contract pre-
senting that pragma (or the first activation) has been executed
the same day or a few days after the release of that version in
Github (23 out of 34).

In the remaining cases, on the contrary, the documentation
of the pragma version has been made available after the date
of the first usage.

Figure 4 shows the history of compiler versions and the
dates of the releases of new versions of the compiler (red dots)
and of the first transaction to a Smart Contract characterized
by the same compiler version. The Fig. 3 shows a net growth
reflecting the growth in use of Smart Contracts in 2016 and
2017.

3) BALANCES AND TRANSACTIONS
Focusing on the Smart Contract balance, we found that a
very few Smart Contracts collect the majority of the total
balance of all Smart Contracts. In fact, the total balance of
the 10175 Smart Contracts is about 4.64 millions Ether, but
80% of the total balance belongs to 10 Smart Contract alone,
namely to less then 0.1% of the contracts accounts. In general
Smart Contracts do not collect Ethers, except in the case
they are wallets. A wallet is a Smart Contract realized to
securely collect Ethers and could implements some functions
such as the ‘‘multiple ownership’’ or the ‘‘escrow’’. Tab. 2
summarizes the information about these contracts.

Considering contract names in this table, most of them
can be recognized as wallets. In order to investigate on
the distribution of the wealth, we represented in Fig. 5 the
distribution of the balance of the contracts in our dataset.
The figure shows the Complementary Cumulative Distribu-
tion Function (CCDF) of the balance. The plot is in log-log
scale and axes tags are in normal scale. The figure suggests
a power-law distribution of wealth among the contracts so
that most of the total wealth is held by a small fraction of
contracts and conversely most of the contracts hold a very
small balance.

FIGURE 5. CCDF of the balance in Ethereum per contract.

FIGURE 6. CCDF of the number of transactions per contract.

Fig. 6 shows the CCDF of the total number of Smart
Contracts transactions. Also this second distribution follows
a power-law-like behavior until the values around 104 trans-
actions.

Given the similarity of the two distributions, we computed
the correlation among the two datasets. The resulting corre-
lation coefficient is 0.026 stating that there is no correlation
between the number of transaction of a Smart Contract and its
balance. Despite the two distributions display similar features
and show a tail, there is no simple general relationship among
Smart Contract balance and number of transactions. In facts,
as reported in Tab. 2, Smart Contracts with high balance may
use a low number of transactions and vice-versa.

B. MEASURES ON SMART CONTRACTS SOURCE CODES
In this paragraph we describe the analysis performed on the
contracts source codes, discuss the parameters under investi-
gation and provide the results of the source code analysis. In
order to analyze the contracts source code, we computed the
values of the following code metrics, that can be divided in
two groups. The first group represents the Volume metrics.
The second group includesContract orientedmetricswhich
describe the logical size of the source code.

1) VOLUME METRICS
M1, Lines of Code (LoC) is the number of line of code exclud-
ing comments and blank lines. For comparison, we computed

78200 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

TABLE 2. Smart Contract balance.

TABLE 3. Statistics on code metrics computed among 10174 contract source codes.

FIGURE 7. Contracts declaration in solidity.

also the total number of code lines (including blanks and
comments).

M2, Comments per line (CpL) is the ratio between lines of
comment and lines of code.

2) CONTRACT ORIENTED METRICS
M3, Number of Declared Contract (NDC) is the number
of contracts (the equivalent of classes in OO languages)
declared in the source code. In solidity the declaration of a
contract type is definedwith the keyword contract. A contract
can inherit from other contracts declared in the source code
and can instantiate contracts, as described in Appendix A.
Fig.7 shows the declaration of two contracts. The contract
Derived inherits functions and variables from the contract
Base. A solidity source code can contain several contract
declarations and a contract implementation can use or inherit
the other contracts in the source code. The deployment of a
Smart Contract involves one contract definition at time.

M4, Number of Declared Functions (NDF) is the number
of functions declared in the source code.

Furthermore, we measure the size of the bytecode of each
contract. The bytecode is the result of the compiling oper-
ation and its length depends on the content of the source
code, on the version of the compiler and on the compiling
optimizations.

Table 3 reports different statistics: the averages, variances,
standard deviations, medians, minima, andmaxima values for
each metric.

FIGURE 8. Histogram of the number of lines of code per source code.

The table shows that all the metrics display features typical
of a tail distribution. They have high dispersion around the
mean, with values of standard deviation comparable or even
higher than the median. Such phenomenon is typically related
to the presence of statistical units with very large values of
the metric which contribute to rise the value of the average
with respect to the median. The maximum values are an order
of magnitude larger than the average, indicating the presence
of outliers. The shortest bytecode has a length of 57 bytes.
Considering the maximum values, the longest source code
has a length 10 times longer that the average value in the
dataset. The same can be said for metrics M1 (LoC) and M3
(NDC). The largest Bytecode is about five times the average.
Max values ofM2 (CpL) andM4 (NDF) aremuch higher than
the average value.

In order to represent the distribution of metrics values in
the dataset we plot the histograms for the numbers of lines of
code, of the number of contract declarations per file (NDC)
and of the size of the bytecode. Fig. 8 shows the histogram
of the number of lines of code. Each bin is large one hun-
dred units. The mode of the distribution is between 100 and
200 lines of code.

VOLUME 7, 2019 78201

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

TABLE 4. Matrix of the cross-correlation coefficients between metrics and indicators computed among 10174 contracts.

FIGURE 9. Histogram of the number of contract declaration per source
code.

FIGURE 10. Histogram of the length of bytecodes in byte.

Fig. 9 shows the number of occurrences of the discrete
values of the NDC, i.e the number of contract declarations
per source code file. In this case the bin size is set to one.
The mode of the number of contract declarations per file is
1 since source codes with more than 15 contract declarations
are rare. These two graphs show a fast decreasing of values,
characterized by a long tail.

Fig. 10 provides the histogram of the size of contracts
bytecodes. Each bin is large 1000 bytes. This graph presents
a normal-like distribution. The mode is between 6000 and
7000 byte.

In order to investigate if and how code metrics influ-
ence each other, we computed the cross correlation matrix.
Tab 4 reports the results of the cross correlation coefficients
between code metrics, including the length of the bytecode
and the number of transactions of each contract, that will be
discussed later. The highest correlation coefficient, which is
trivial, is between the metric M1 (LoC) and the total number

of lines. Also theM4 (NDF) has a high correlation coefficient
with the LoC and the total number of lines. The M2 (CpL)
is not correlated with the length of the code or with the M4
(NDF). This means that the number of comments on the
code is heterogeneous and, in general, not proportional to the
length of the source code.

The length of the bytecode is only moderately correlated
both with the code length and with the number of declared
functions. In addition, the number of transaction that involve
a Smart Contract is not correlated with any code metric. This
means that, for instance, highly used Smart Contracts have
very different source codes lengths. In the following we will
confirm this results with a further analysis.

V. DETAILED ANALYSIS OF THE TOP 20 USED
SMART CONTRACTS
In this section, we present a detailed analysis of the twenty
Smart Contracts with the largest number of transactions (Tx
count). Tab. 5 lists these contracts. That can be classified
according to their typology [2] in five categories: Wallet,
Financial, Game, Library, and Notary. Wallet contracts are
characterized to be deposits of ether and they usually have
a high balance. Financial contracts aim to provide functions
useful to manage financial goods such as tokens. Game
contracts implement lotteries and digital collections. Library
contracts are developed and deployed to provide functionality
useful for other contracts (i.e maths libraries). Finally, Notary
contracts take advantage on the blockchain characteristics to
record agreements between parts.

In the following we provide a short description for each of
the 20 most used Smart Contracts.

A. SMART CONTRACTS DESCRIPTION
1) ETHERDELTA
It is tagged as etherdelta_2 on Etherscan and is the
Smart Contract executed to store and transfer tokens
with Ethereum wallets, in the cryptocurrency exchange
EtherDelta.8 EtherDelta is in fact one of the most used
decentralized trading platform for Ethereum and manages
ERC20 compatible tokens. In order to trade on EtherDelta
a user must create a wallet or use an existing wallet which
interacts with this Smart Contract.

8https://etherdelta.com

78202 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

TABLE 5. List of the twenty smart contracts under examination.

Bitcoinereum9 is the fist Bitcoin-like mineable Ethereum
ERC20 Token and, through the Bitcoin Supply mechanism,
enables a bitcoin-like currency to run on the ethereum
blockchain. To bring the Bitcoin supply mechanism into
Ethereum, Bitcoins enter the Ethereum blockchain in form
of ERC20 tokens.

KittyCore and SaleClockAuction are two Smart Con-
tracts belonging to one of the most popular applications of
Ethereum blockchain, CryptoKitties, the game in which users
can buy, sell, and breed cartoon kittens. The application was
launched on November 28th 2017, and in a little more than
a month these two contracts (out of a total of 17 Smart
Contracts developed in this project) have been responsible for
the 6,2% of all transactions on the ethereum network.

2) REPLAYSAFESPLIT
In the set of 20 top used Smart Contracts, the contract
name ReplaySafeSplit appears three times. The functional-
ity of these three Smart Contracts are very similar: they
are used to split Ether funds in several addresses and pro-
tect against replay attacks between Ethereum Classic (ETC)
and Ethereum (ETH). As a result of the hard fork of the
Ethereum network (on July 20th, 2016), holders of an ETH
fund prior to the 1920000 block ended up with two funds
on the same address and therefore found themselves having
ETH and ETC in equal quantities: the ETHs on the support-
dao-fork network and ETC on the oppose-dao-fork network.
The two coins are still linked to each other: a move of
ETHs moves also ETC and vice versa. ReplaySafeSplit is
used to separate ETH pre-forks on two new and different
addresses, one specific for ETH post-fork and another one
specific for ETC. ReplaySafeSplit recalls the fork oracle
Smart Contract.10 A specific version (labeled Bittrex_211 on

9http://www.bitcoinereum.com/
10Having address 0x2bd2326c993dfaef84f696526064ff22eba5b362
11Having address 0xE94b04a0FeD112f3664e45adb2B8915693dD5FF3

Etherscan) is used on the Digital Currency Exchange Bittrex
(https://bittrex.com/) with the same capabilities.

3) REGISTRAR
It is one of two Smart Contracts that compose the core of
the Ethereum Name Service12(ENS), an extensible naming
system based on the Ethereum blockchain. Registrar owns
a domain and, according to the rules written in the con-
tract, issues subdomains of that domain to users. For each
domain and subdomain Registrar memorizes the owner (an
external account, typically a user or another Smart Contract),
the resolver and the time-to-live for all records.

DSToken (labeled EOSTokenContract) and EOSSale
(labeled EOSCrowdsale) are Smart Contracts of the famous
Infrastructure for Decentralized Applications EOS13 that
introduces a blockchain architecture designed to allow the
vertical and horizontal scaling of decentralized applications.
EOSTokenContract is in fact the token of the EOS ICO
that aims to finance block.one, the platform that, based on
scalability, flexibility and usability criteria, intends to make
the blockchain technology accessible to businesses which,
in this way, can memorize Smart Contracts on blockchain.
EOS tokens are ERC-20 compatible tokens distributed on the
Ethereum blockchain under a related ERC-20 Smart Con-
tract. EOSTokenContract handles all the logic of ownership
and transfers; Instead, EOSCrowdsale manages all the logic
of contributions, periods and claiming.

4) CONTROLLER
It is one of the two Smart Contracts that implements the core
of Bittrex (the other one is ReplaySafeSplit, as previously
described) and manages the exchange of cryptocurrency. The
main function of Controller is MakeWallet that is used to
create ETH wallets and has control functions of owner and
destination.

12https://ens.domains/
13https://eos.io/

VOLUME 7, 2019 78203

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

OMGToken (labeled OmiseGoToken). It is the token
of OmiseGO (OMG),14 currently one of the most famous
cryptocurrencies of the ICO market which aims to simplify
and make cryptocurrency transactions almost instantaneous.
OMG is a public Ethereum-based financial technology for
use in mainstream digital wallets. At the same time it is
an e-wallet and payment platform acting through assets and
crypotocurrencies. The advisors of OMG are almost all from
the Ethereum foundation. OMGToken is an ERC20 basic
token on Ethereum. Once the OMG blockchain is created,
the OMG tokens are transferred to this new blockchain.

TronToken (TRX) is the token of the TRON ecosystem.15

It is the blockchain-based decentralized protocol and open-
source platform that aims to construct a global free content
entertainment system and provides functions of credit sharing
and payment for many services such as online casinos, mobile
games, live shows, social networks. It is based on an ICO
and is a ERC20 standard Ethereum token. Starting from
December 2017 it is the second most used token with market
capitalization that rose from $477 million to $3 billion just
within 5 days (from December 13 to December 18).

MCAP16 uses the ERC 20 protocol for peer-to-peer trans-
actions and is the token of MCAP Labs ecosystem. Its ICO
was launched by BitcoinGrowthFund (BGF) with the aim to
invest in the mining of cryptocurrencies, especially Bitcoin.
The algorithms developed by BGF identifies which cryp-
tocurrency must be mined at any time to maximize profit. The
Smart Contract has five functions:mcap to initialize contracts
with initial supply tokens to the creator of the contract; trans-
fert that sends coins; approve which allows another contract
to spend some tokens in the owner behalf; approveAndCall
that in a single transaction approves and communicates the
approved contract and finally transfer, called from a contract
that attempts to obtain the coins.

5) GOLEM NETWORK TOKEN (GNT)
It is the token of the Golem Network project,17 a decentral-
ized distributed network of computers in which users can
sell and buy computing power. Through Golem Network
users can decentralize all the tasks thanks to the computer of
another user connected to the network, or sell the computing
power of their own computer to help those who need it.
The GNT Token is partially-ERC20-compliant because it
does not implement the approve, allowance, and transfer-
From functions, and the Approval event. On the Ethereum
blockchain, the crowdfunding start block is 2607800 and it
was launched in the 11thNovember 2016. Themain functions
of this Smart Contract are: management of payments for
resource usage and remuneration for software developers;
submitting of deposits by providers and software developers

14https://omisego.network/
15https://tronlab.com/en.html
16https://bitcoingrowthfund.com/mcap)
17https://golem.network/

and participation in the process of software validation and
certification.

SNT (labeled StatusTokenContract) is the token of Status
Network,18 an open source messaging platform that includes
a DApps browser, a messenger, a wallet, and can be described
as a mobile operating system to access Ethereum from any-
where. It is therefore a peer-to-peer messaging app without
central server to store private data or conversation. Status
Network aims, through the use of blockchain technology,
to remove centralized third-party applications or middlemen
in the people communications. The entire project combines
10 Smart Contracts. SNT is a ERC20-compliant token and
derives from the MiniMe Token19 that allows for token
cloning (forking). SNT has a modular architecture and is
used to power the Status Client, including some fundamental
utilities such as a Decentralized Push Notification Market,
the Governance of the Status client, Username Registration
using ENS, and so on.

HumanStandardToken (labeled QtumTokenContract) is
the token of the Qtum project,20 a Value Transfer Proto-
col (VTP) blockchain. Qtum is therefore a Smart Contract
ecosystem for businesses that want to run decentalized apps
blockchain-based, executable on mobile devices. The aims is
to turn any human-readable agreements into a Smart Con-
tract. Qtum uses Bitcoin’s UTXO model in order to allow the
contact execution also on mobile devices.

HumanStandardToken is a ERC20-compliant and includes
3 contracts called Token, StandardToken and HumanStan-
dardToken. The contract Token modifies ERC20 base stan-
dard in the totalSupply function because a getter function for
the totalSupply is automatically created.

PayToken (labeled TenXContract) is the token of the
TenXPay (TENX)21 project that aims to solve one of the
major problems of the cryptocurrencymarket: how you spend
cryptocurrencies in the real world. It is a portfolio-bank based
on cryptographic assets with a debit card.With an encryption-
protected off-line multi-asset instant transaction network,
the service supports unlimited cryptographic assets (initially
only supports ETH, ERC20, DASH and BTC). Users can
choose which cryptographic asset to use for payment by debit
card and ATM withdrawals. The contract calls a function
named MakeWallet. PayToken is a ERC20-compliant token.
Users can store PayToken in any ERC20-enabled wallet.

Etheroll (labeled Etheroll_old_3) is a Smart Contract of
the Ethereum Dice game project and is used to place bets
on dice games using Ethers with no deposits or sign-ups.
The dice rolls are random and cryptographied in a secure
way, thanks to the Ethereum blockchain. In order to obtain
the final results of dices, the Etheroll smart-contract invokes
the API of Random.org,22 performs sha3() encryption on its
result and on IPFS address of the TLSNotary proof. In the

18https://blog.status.im
19https://github.com/Giveth/minime
20https://qtum.org/
21https://www.tenx.tech/
22https://api.random.org/json-rpc/1/invoke

78204 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

following we will provide more detailed information of this
Smart Contract.

BAToken (labeled BatTokenContract - BAT) is the token
of the newBrave browser, created by Brendan Eich, creator of
Javascript and cofounder of Mozilla. Users are paid in digital
currency to view advertising or to click on the advertising
banners. BAT is ERC20-compliant.

Most of the smart contracts listed in Tab.5 are financial
contracts, and the description highlight the economic interest
behind the contract.We found that the several of the described
projects makes use of an ICO to fund, and consequently pro-
mote, the business idea. These projects are Etherdelta, EOS,
OmiseGo, TRON, MCAP, Golem, Status, Qtum, TENX,
Etheroll, and Brave Browser. One of the success factors of
an ICO is the team size and its composition [10], [11]. So,
projects which resort to an ICO are more likely supported by
a convincing and well-formed development team.

B. SMART CONTRACTS USAGE INDICATORS
In this section we define empirical indicators useful to
describe Smart Contracts usage from a statistical point of
view. We identified various usage indicators characterizing
how and to which extent Smart Contracts code is called or
used in the applications of the Ethereum blockchain. We
divided the usage indicators in two groups. A first group,
characterizing blockchain interaction, describes the occur-
rences in the blockchain of contract-related operations. It
contains the following indicators.

I1, Number of transactions (Tx Count): the overall number
of transactions (both in input and in output) involving the
contract.

I2, Transactions per day (Tx/day): the number of transac-
tions normalized with respect to the days of activity (DoA
namely the elapsed time in days between the contract creation
and its last transaction).

The selected indicators can be easily extracted from the
blockchain data and offer a snapshot of the impact that the
contract had on the blockchain.

A second group, developers’ interaction, includes indica-
tors describing the evolution of a contract in terms of its
development history and of its reuse to create new contracts.
It contains the following indicators.

I3, Number of Deployments: counts the total number of
contract versions deployed in the Ethereum blockchain and
verified using the etherscan service (consider that each deploy
involves a cost in Ether). We compared this indicator with the
total number of contracts having the same name.

I4, Number of versions: counts the number of versions of
a Smart Contract which are used within the same project.
This indicator consider only versions of the contract that have
been active in a certain period of time and it does not count
contracts with a low number of transactions (less than 100).
It indicates a continuous activity of development.

I5, Number of code reuse: counts the number of new con-
tracts created reusing another Smart Contract source code
belonging to a different project. As the previous indicator,

we excluded from this analysis contracts having a low number
of transactions (less than 100).

We also take into account the balance of the Smart Con-
tracts (i.e. the amount in Ether associated to the contract
address), but we don’t consider it as a good usage indicator
because it increases and decreases over time, and, further-
more, only few contracts are used as a deposit of Ether (see
subsection IV-A.3).

Tab 6 reports the values of the usage indicators for the
twenty Smart Contracts analyzed together with the compiler
version. Results show that these contracts are involved every
day in a large number of transactions and have a null balance
in most of the cases. On the other hand, the indicator value
describe the heterogeneity in the usage of these Smart Con-
tracts in terms developers’ interactions.

1) BLOCKCHAIN INTERACTION
The twenty Smart Contracts chosen have the highest value
of I1 (TxCount), namely the total number of transactions.
A transaction that involves a Smart Contract is also called
message and contains the instructions needed to execute a
function of the contract. It involves a change of blockchain
data (i.e its state). Consider that every blockchain change has
a cost, that accounts for the computational effort needed to
execute the transaction. These selected contracts are those
that have involved many changes of state of the Ethereum
blockchain.

On Tab 6 the contract BAToken, in position twenty,has a
number of transactions over seventy times higher than the
average value of the complete dataset which is 3019. The
first contract, Etherdelta, has been involved in a transaction
twenty thousand times more than the average usage. In total,
these contracts are about 0.2% of the total set but are involved
in about 61.3% of the total number of transactions. These
numbers are in line with the distribution of the number of
transaction previously reported in Fig 6. The enormously
larger usage of this subset of Smart Contracts, explains the
presence of a strong tail in the statistical distribution reported
in Fig 6 and justifies our choice of examining in detail the
most used Smart Contracts.

The values of I2 (Tx/day) are a normalization of the values
of the indicator I1, obtained dividing it by the effective usage
time. This allows us to compare Smart Contracts in terms of
frequency of interactions, evenwhen they have been deployed
in the blockchain at different times.

The number of usage days is the number of days between
the first and the last transaction of the contract. All the con-
tracts under examination are characterized by a high value of
I2, from aminimumof 479.32 up to 42130.33 transactions per
day. Contracts with a high value of I2 can be considered either
needful contracts in the Ethereum ecosystem, or contracts that
have had a extraordinary popularity in their activity period.

It is relevant the case of the contract KittyCore, that,
as described before, is a decentralized game. Considering the
value of the indicator I2 of that contract, that is the highest
value of transaction rate among the twenty selected contracts,

VOLUME 7, 2019 78205

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

TABLE 6. Contract usage indicators.

we found that this contract is involved in about 30 transactions
per minute. It is associated to the contract SaleClockAuction
that also has a very high value of I2.

In Tab. 6 we reported the Days of activity (DoA) for each
contract. The contract KittyCore counts only 33 DoA. The
longest-running contracts are the ReplaySafeSplit family (all
exist and have been used for more than a year), followed by
Etherdelta and Registrar.
For what concerns the balances, only five out of twenty

Smart Contracts have non null balances and only two
have significantly high balances. Etherdelta and Dstoken,
as already described, the former is a popular wallet, the latter
is a financial token born to fund a nascent blockchain. The
analysis shows that most of the twenty Smart Contracts do
not collect ether inside.

2) DEVELOPERS’ INTERACTIONS: VERSIONS AND REUSE OF
CODE
We examined the interaction of developers with Smart Con-
tracts through the blockchain. According to the indica-
tors defined, we analyze the number of deployments (I3),
the number of versions (I4) and the number of times of code
reuse (I5) for each Smart Contract.

One of the objectives of our empirical study is to inves-
tigate if Smart Contracts have been implemented thorough
a code development process. For this reason, we checked
the history of each contract, examining the presence of past
versions and if improved versions have been deployed into
the Ethereum blockchain.

We started our investigation filtering the dataset by the
contract name, and then, since different Smart Contracts can
have the same name, by means of an accurate analysis of the
lines of code, we extracted the set of contracts referable to the
same development history. The analysis of the source code
allows to identify different contracts holding the same name.

These contracts have been analyzed as different contracts.
For computing the indicator I3 (Number of Deployments),
we consider the number of contracts referable to the same
source code. In Tab 6 we reported the I3 indicator (NoD)
together with the number of contracts with the same name
(Tot). We defined as a ‘‘new version’’ of a previous Smart
Contract each new Smart Contract that once uploaded in the
blockchain replaces the previous one in terms of blockchain
interactions. The new version could contain code changes.
We reported the values of the usage indicator I4 (Number of
Version) in Tab 6 as NoV.

Finally, for the indicator of Reuse of Code (I5) we consid-
ered as reuse of the code of a Smart Contract the cases where
the source code of the contract is used to implement a very
similar contract that has the same name but is referable to
a different project (for instance to implement a new token).
The number of reuse of code is reported in Tab 6 as RoC.
Evaluating version or reuse of code we did not consider those
Smart Contracts which have a low number of transactions
(less than one hundred), because they are rarely operational
and could be only tests. So, they do not represents properly
a new version or a reuse. In the following we analyze some
contracts, focusing on the developers interaction, namely in
terms of versions and reuse of code.
EtherDelta has eight contracts with the same name. It has

five different versions, and the last one created is the most
active. Two of the old versions are still used but they have a
low number of transactions, about one per week. We notice
that both of them have a lower amount of Ethers than the
first one, therefore we can suppose that these Smart Contracts
were used only by the contract developers and not by final
users.
ReplaySafeSplit has three different Smart Contracts in the

top twenty and all of them are active and are involved, on aver-
age, in a transaction every five minutes. By analyzing the

78206 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

TABLE 7. Code metrics results in the twenty selected source codes.

code and the project’s history, we found that they have a
different usage for different projects, as explained in subsec-
tion V. We classified them as reuse of Smart Contract code,
as reported in row 19 in Table 7. The other two (rows 4 and 13)
are the examples of the reuse of code of the aforementioned
Smart Contract and they do not have new versions and are not
reused.

We found eleven contracts named Registrar. Analyzing
these contracts we found that only 3 source codes can be
evaluated in terms of the indicator I3, and the remaining have
a completely different code. In addition, the discarded Smart
Contracts have been involved in less than 10 transaction and
these were probably tests. Only one out of three is active and
belongs to the top twenty. We found one old version of this
contract, and no reuse of code.
DSToken has ten records and we found six reuse of code,

each of which derives from the Smart Contract in table 5, line
6. To confirm this, we checked on Etherscan that different
labels are associated to these (still active) six addresses.

By considering a transaction number higher than one hun-
dred and with reference to Etherscan, we found for Human-
StandardToken 11 documented reuse of code. The remaining
contracts are not evaluated in terms of reuse or new version
of code, given the low number of transactions (in the order
of units). However the code in these contracts has the same
functionalities. We can state that, among those investigated,
these two Smart Contracts are undoubtedly the most popular
in terms of reuse of code because they were used as a refer-
ence for different projects.

The Controller has two versions related to the project
Bittrex, as mentioned in subsection V.We detected a situation

similar for Registrar : only 4 Smart Contracts belong to the
project analyzed, the remaining 12 have a number of trans-
actions in the order of units and a source code completely
different. To be more precise we respectively found three
couples of Smart Contracts and 6 Smart Contracts with the
same source code or a different version of this.

Considering the records ofMCAPwe did not find different
versions or reuse of code. One of the records has a different
code and the other two are probably tests because of the
low number of transactions (in the order of units). Similarly,
GolemNetworkToken has no new versions or reuse of code.

Finally, all but one of the Smart Contracts named Etheroll
found in the dataset are related to the same project. We con-
sidered four of these as different versions and the remaining
as tests because of the low number of transactions. Actually,
the previous versions are not used. Anymore this phenom-
ena, in terms of source code improvement, is similar to the
EtherDelta case. Referring to Table 6 the Etheroll Smart
Contract in line 18 is no longer used and it has been replaced
by the current active version.23

We also analyzed the declared pragma version. We found
that in cases of different versions of the same Smart Contract,
the pragma version of newer versions is generally updated
with respect to the previous one, but not always corresponds
to the most updated version of the language. There is only
one case, the Etheroll Smart Contract,24 that does not update
the pragma version with respect to the previous one (v04.10)
even if the next version (v04.11) has already been released.

23Having address 0xD91E45416bfbBEc6e2D1ae4aC83b788A21Acf583
24Having address 0xece701c76bd00d1c3f96410a0c69ea8dfcf5f34e

VOLUME 7, 2019 78207

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

In all cases of Smart Contract updating, the developers have
deployed the new version in the blockchain, supporting the
related costs.

C. CODE METRICS
For every Smart Contract source code listed in Tab. 5 we
computed the code metrics described in Section III and the
following additional code metrics.

M5, Lines of code per Function (LpF): it is the average
number of lines of code written to implement a function.

M6,Max cyclomatic complexity (MCC): it is the max value
of the McCabe cyclomatic complexity among the cyclomatic
complexities of all functions in the contract.

M7, Sum of cyclomatic complexities (SCC): it is the sum of
the McCabe complexity of each function in the source code.
That value depends on the number of function in the con-
tract. The average cyclomatic complexity in a Smart Contract
source code is equal to the division between the values of
M7 and M4.

The last two metrics are Complexity Metrics. In par-
ticular, the cyclomatic complexity measures the number of
linearly independent paths through a function in the source
code. We computed the cyclomatic complexity according to
McCabe definition [16] and using a commercial software.25

We report in Tab. 7 the resulting values for the metrics from
M1 to M7 computed for each Smart Contract source code
belonging to the selected set.

Results in Tab. 7 allow us to compare the value of metrics
from M1 to M4 for the overall set of contracts presented in
Tab. 3 with those of the top twenty contracts having the higher
number of transactions and representing the contracts having
the larger interactions in the blockchain.

We found that the source codes of the top twenty contracts
have, on average, a value of M1 (LoC) equal to 305.35, that
is well higher, on average, than the value of M1 computed
on the full dataset (180.01 lines). In particular, exactly half of
the source codes have a value of M1 higher than 180. Results
confirm that the number of transactions and the number of
lines of code are not correlated.

Analyzing M2 in Tab 7, namely the number of comments
per line of code, we can observe a high variability of the
results. Values ranges from one line of comment every one
hundred lines of code to about one line of comment per one
line of code. On average, there are 0.41 comments per line of
code and this number is a little lower than the average value
of the full dataset (0.49).

Considering the number of declared contracts measured by
M3, and the number of declared functions measured by M4,
we can observe, on average, higher values of declarations in
comparison with the global results. In particular the average
value of M3 is 5.90 (the average value of the full dataset
is equal to 4.39) and M3 values range between a minimum

25We computed the cyclomatic metrics using Understand, that
is a scitools software. These cyclomatic metrics are described in
https://scitools.com/support/cyclomatic-complexity/

of 1 to a maximum of 16, and half of the twenty Smart
Contracts have M3 greater than 4. High values of M3 means
that source codes of Smart Contracts are written exploiting
the inheritance mechanism. The source code of KittyCore
(having the maximum number of declared contracts) is a
typical example of systematic use of the inheritance. The
structure of this contract is reported in Appendix C.

The average value of M4 is 26.70, and it is about five times
the average value of the full dataset (that is equal to 5.30).
This means that, on average, the twenty selected contracts
implement a higher number of functions. In facts, 17 out
of 20 declare more than 5 functions. Values of M4 have
minimum 1 and maximum 69. The highest values of dec-
larations is related to the contract in third position, namely
KittyCore that implements a large number of functionalities.
High values of declarations characterize also some tokens
(i.e Dstoken, EOSSale, SNT). These contracts improve the
functionalities defined in the ERC-20 standard, by adding
specific and customized features.

Analyzing the results of the metric M5 (Number of lines
per function), computed only for the set of twenty con-
tracts, we can observe that the functions have, on average,
6.30 lines. The contract GolemNetworkToken has the largest
value. Considering the ERC-20 compliant contracts, the vari-
ability of the functions length suggests that tokens are not all
implemented in the same way.

Considering the cyclomatic complexity metrics, M6 and
M7,we can observe that the majority of the source codes has a
maximum complexity (M6,MCC) lower than four (or in other
words, it is hard to find functions with cyclomatic complexity
greater than 4). Both the source code of KittyCore and the
source code of BAToken have a function characterized by
the highest value of cyclomatic complexity equal to seven.
See Appendix C for the function of KttyCore which has
the maximum cyclomatic complexity. The lower value of
M6 is equal to 2 and characterizes the contracts OMGToken,
SaleClockAuction and HumanStandardToken.

Finally, considering M7, namely the sum of the cyclomatic
complexity of each function declared in the source code,
the three most complex contracts belong to SNT, EOSSale,
and KittyCore. The three versions of ReplaySafeSplit are
characterized by a very low value of M7 because of the
low number of functions. The codes reported in Appendix B
shows that this contract has only two functions.

D. ANALYSIS OF RESULTS
Tab 8 shows the correlationmatrix betweenmetrics computed
among the twenty selected contracts. As we can expect, met-
rics values of M1, M3, M4 and M7 are mutually correlated
and this means that the longer is the code, the more complex
is the program. In particular, the sum of the cyclomatic com-
plexity (M7) and the number of declared functions (M4) have
a correlation factor that represent a strong linear relationship
of the ratio between the two metrics. The values of M5 and
M6 have a average-high value of the correlation coefficient.

78208 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

TABLE 8. Cross Correlation Matrix of source code metrics.

TABLE 9. Correlation coefficients between usage indicators and code
metrics.

The metric M2 does not present particular correlations coef-
ficient.

In order to analyze the relationship between source codes
and the use of the contracts, we analyzed if results of the
applied metrics are correlated with the usage indicators.
We studied if and how the two analysis are correlated com-
puting the correlation matrix in Tab. 9 that reports correlation
coefficients computed for the twenty selected contract.

We discovered that the there is no particular connection
between these analysis. In particular, the indicator I1 (Tx
count) is weakly correlated with all the other metrics. The
indicator I2 (Tx/day) shows a interesting moderate correla-
tion with the metrics that describe size and complexity of the
source code (M1, M3, M4, M6 and M7).

VI. DISCUSSION AND RESULTS
Results of this empirical study provide a global overview of
the world of Smart Contracts. This world can be described
as very active in the usage of the blockchain, heterogeneous
in the typologies and in the code features, and supported
by an interactive and reactive development community. Our
research leads to several outstanding findings we summarize
below.
Result 1 (Impact of Solidity Language Evolution on Smart

Contracts Development): We found that the Smart Contract
developers’ community follows and constantly adhere to
the evolution of the Smart Contract programming language,
Solidity. The reasons are probably found in the need to
develop, already from the beginning, efficient and secure
Smart Contracts. In fact, the update of a Smart Contract for
bug fixing or for adding new functionalities consists in the
deployment of a new Smart Contract in the blockchain and,
in parallel, on the disposal of the old one, since there is
not possibility to update or modify the source code once the

contract is deployed on the Blockchain, as instead occurs for
traditional software. The creation of a Smart Contract leads to
a cost in Ether that depends on the dimension of its bytecode.
Result 2 (Smart Contracts Purposes): By analyzing the

purposes of various Smart Contracts we found that devel-
opers have overtaken the concept of ‘‘parties’ agreements’’
that characterizes the first era of Smart Contracts. In facts
they created several typologies of decentralized applications,
ranging from games to utility tokens. We also found that just
a few percent of the total Smart Contracts are used to deposit
ether.
Result 3 (Reuse of Code): We found strong evidences

on the practice and importance of code reuse. Thanks to
the availability of thousands Smart Contracts source codes,
developers start from already implemented contracts to create
new and more efficient applications, or updated and cus-
tomized versions of former Smart Contracts. In addition,
source codes are generally well commented, and this helps
new developers to understand their contents.
Result 4 (Contract Name Relevance): The ‘‘contract

name’’ of a deployed Smart Contract could cause some mis-
understanding. We discover that some specific names are
commonly used even if in general are associated to very
different source codes with different purposes. We can con-
clude that contract name is not representative of the contract’s
purpose and code.
Result 5 (Interaction of Deployed Smart Contracts With the

Blockchain):We analyzed the interaction of deployed Smart
Contracts with the blockchain by means of usage indicators
and we discovered that the number of transactions follow a
power-law distribution. Since we found that the balances of
the corresponding addresses follow a power-law distribution
too, we computed the correlation among the two datasets
finding no relationship between them. Indeed, Smart Con-
tracts with high balancemay use a low number of transactions
and conversely Smart Contracts with very many transactions
may have a low balance.
Result 6 (Balance and security connection): As stated

before, we found that the distribution of the wealth overtakes
the Pareto law because the wealth is strongly centralized on
very few contracts (about the 90% belongs to twenty out of
over ten thousands deployed Smart Contracts). This is related
to the variety of typologies of Smart Contracts. In particular,
most of the wealth belongs to contracts of the type wallet,
which are responsible of the management and protection

VOLUME 7, 2019 78209

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

of high amounts of cryptocurrency and consequently are
more security critical. Our analysis thus suggests that a great
advance in security with respect to cryptocurrency manage-
ment and storage can be achieved focusing on the code quality
or vulnerability analysis of just a reduced fraction of the total
number of Smart contracts deployed on Ethereum, since only
a little fraction of them holds and manages the largest part of
cryptovalues.
Result 7 (Source code analysis and code metrics): The

results of the analysis of the Source Codes give us a picture of
a collection of Smart Contracts with heterogeneous features.
These are characterized by code metrics that on average do
not assume high values (for instance, the average number of
lines of code is about one hundred and eighty lines), but have
relatively high variances. This reveals that software develop-
ment for Smart Contracts is highly heterogeneous reflecting
the fact that many deployed contracts are probably only proto-
types or trials or that many inexperienced developers deploy
contracts on Ethereum without the adoption of a structured
programming approach.

Source codes present, on average, four contract declara-
tion, revealing the use of the inheritance or the recursion
to already deployed contracts. The cross correlation analysis
shows us that the Smart Contract bytecode (that can be seen as
the payload of the transaction with which the Smart Contract
is deployed) is mildly correlated to the number of lines of
code and to the number of declared functions. We also found
that the number of transactions is not correlated with source
code features. This means that the most used Smart Contracts
are not necessarily those well or better written. This renders
even more critical the analysis of metrics and vulnerabilities
of Solidity since it may easily occur that low quality or
vulnerable code may be repeatedly and frequently used in
exchanging goods or wealth across the Blockchain addresses
or that such vulnerable code may be reused many times.
Result 8 (Detailed Analysis of Features in the Most Used

Smart Contracts): We analyzed in detail a subset of twenty
Smart Contracts, namely those involved in the highest num-
ber of transactions.
Result 8.1. Smart Contract Purposes: We discover that

they are mainly financial Smart Contracts (that implement a
token compatible with the standard ERC20). We found also
wallet, library, notary, and game Contracts. The majority of
the contracts in this subset belongs to projects funded using
an ICO, fact that emphasize the role of the development team
and justifies the use of ERC20 tokens.
Result 8.2. Definition of Empirical Usage Indicators to

Analyze Smart Contract Activity: To characterize the activity
behind these twenty Smart Contracts we define five usage
indicators. These characterize both the interaction with the
blockchain in terms of number of transaction and number of
transaction per day, and the activity of the development com-
munity in terms of number of uploads, number of versions
and number of reuse of code. We discovered that the game
contract ‘‘KittyCore’’ has had, from the beginning, a high
interaction with the blockchain. We also found that some

contracts are still active in the blockchain after years, as it is
the case of the contracts called ReplaySafeSplit. Regarding
the number of uploads and the number of ‘‘reuses of code’’,
we discovered that eleven contracts have a development
story behind it. In facts, these contracts are the results of
a continuous improvement and of the related replacement
of the old versions. In four cases we can report the release
of a new version of the contract. We found that the source
code of four contracts was reused to develop new Smart
Contracts.
Result 8.3. Source Code Metrics: Our empirical analysis

shows that the statistics of the subset of the twenty most used
Smart Contracts differ from the statistics computed on the
total set. In particular, these contracts are, on average, longer
(about three hundred lines of code) and define and contain
five times more functions than average. In addition, we dis-
cover that these two metrics are strongly correlated with the
sum of the McCabe cyclomatic complexity computed for the
functions in the source codes, namely they are more complex
than average contracts. Finally, we computed the correlation
coefficient between source codemetrics and usage indicators.
Our results reveal that the number of transactions per day
(that represents the frequency of usage of a Smart Contract) is
moderately correlated with the number of lines of code, with
the number of declared functions, and with the cyclomatic
complexity of the source code.

VII. CONCLUSION
This work presents the setup, the analysis and the results of
an empirical study on a set of Ethereum Smart Contracts and
on their source code. We acquired a dataset of 10174 source
codes, published by the beginning of 2018, and we sta-
tistically analyzed and characterized the overall dataset by
mean of different software measures. Our empirical study
examined the dataset from several points of view, like the
use and the evolution of the Solidity compiler version and
the related Solidity constructs, the number of interactions
and transactions among Smart Contracts and Blockchain,
the purpose and the naming practices for the Smart Contracts,
the code reuse. Our empirical study is devoted to a complete
characterization of the body of information available from
metadata recovered by the analysis of Smart Contracts source
code and by various information related to the Blockchain
environment. The study contributes to understanding the
interaction between Smart Contract and Blockchain and to
the knowledge of the main characteristics of contracts written
in Solidity. It also provides a description of the Ethereum
Smart Contracts as elements of a system that is very active in
the usage of the Blockchain, heterogeneous in the typologies
and in the code features, and supported by an interacting and
reactive development community.

We enrich the research providing more explicit knowledge
about the Ethereum Smart Contract domain gathering eight
relevant empirical results.

Future works should consider to analyze a higher number
of Smart Contracts (taking into account the set of Smart

78210 VOLUME 7, 2019

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

Contracts without available source code), further and specific
code metrics (i.e to evaluate eventual code optimization in
order to limit the Ethereum gas consumption or to measure
the use of libraries and the interaction with already deployed
contracts), other usage indicators (such us the internal trans-
actions and the interaction between deployed contracts) and
a wider analysis of correlation.

APPENDIX
SAMPLE OF SMART CONTRACTS SOURCE CODES
A. CROWDSALE
A portion of the source code of the contract Crowdsale
deployed at the address:

0xa1877c74562821ff59ffc0bc999e6a2e164f4d87. This
Smart Contract is named ‘‘Crowdsale’’.

The source code includes two contract definition. The first
contract is token and the second is Crowdsale. The con-
tract token is an interface. In a interface, all functions are
only declared but not implemented. The contract Crowdsale
declare an ‘‘instance’’ of the contract token called tokenRe-
ward and assign to it the contents of an already deployed
Smart Contract. In the source code, the instance of a contract
can be used to execute its functionalities.

B. REPLAYSAFESPLIT
The original source code of ReplaySafeSplit. This code has
the lowest sum of cyclomatic complexity belong the set of the
twenty most used Smart Contracts.

Its source code is available on etherscan.io at the address:
0xE94b04a0FeD112f3664e45adb2B8915693dD5FF3

C. KITTYCORE
Contract declaration and the listing of the function isValid-
MatingPair. This function has the higher cyclomatic com-
plexity. The contract name of the deployed contract corre-
sponds with the name of the last contract declaration. The
last contract inherits most of the contracts declared above.
The function isValidMatingPair is the function which has the
highest cyclomatic complexity among the contract. The com-
plete source code is available on etherscan.io at the address:

0x06012c8cf97BEaD5deAe237070F9587f8E7A266d

VOLUME 7, 2019 78211

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

ACKNOWLEDGMENTS
The authors would like to thank the team ofetherscan.io
from which the authors extracted our source code dataset.

REFERENCES
[1] M. Bartoletti, T. Cimoli, and R. Zunino, ‘‘Fun with bitcoin smart con-

tracts,’’ in Proc. Int. Symp. Leveraging Appl. Formal Methods, Oct. 2018,
pp. 432–449.

[2] M. Bartoletti and L. Pompianu, ‘‘An empirical analysis of smart con-
tracts: Platforms, applications, and design patterns,’’ in Proc. Int. Conf.
Financial Cryptogr. Data Secur. Cham, Switzerland: Springer, Nov. 2017,
pp. 494–509.

[3] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, ‘‘Smartinspect:
Smart contract inspection technical report,’’ Inria, Lille, France, Tech.
Rep., Dec. 2017. [Online]. Available: https://hal.inria.fr/hal-01671196

[4] V. Buterin, ‘‘Ethereum white paper,’’ Ethereum.org, Tech. Rep., 2014.
[Online]. Available: https://github.com/ethereum/wiki/wiki/White-Paper

[5] C. Cachin, ‘‘Architecture of the hyperledger blockchain fabric,’’ in
Proc. Workshop Distrib. Cryptocurrencies Consensus Ledgers, Jul. 2016,
pp. 1–4.

[6] T. Cui et al., ‘‘Achain blockchain whitepaper,’’ Achain, China, Tech.
Rep., 2017. [Online]. Available: https://www.achain.com/documents/
Whitepaper.pdf

[7] P. Dai, N. Mahi, J. Earls, and A. Norta. (2017). Smart-Contract Value-
Transfer Protocols on a Distributed Mobile Application Platform.
[Online]. Available: https://qtum.org/uploads/files/cf6d69348ca50dd
985b60425ccf282f3.pdf

[8] H. Rocha, S. Ducasse, M. Denker, and J. Lecerf, ‘‘Solidity parsing
using SmaCC: Challenges and irregularities,’’ in Proc. 12th Int. Workshop
Smalltalk Technol. (IWST), Sep. 2017, Art. no. 2.

[9] G. Destefanis, A. Bracciali, M. Marchesi, M. Ortu, R. Tonelli, and
R. Hierons, ‘‘Smart contracts vulnerabilities: A call for blockchain soft-
ware engineering?’’ in Proc. Int. Workshop Blockchain Oriented Softw.
Eng. (IWBOSE), Mar. 2018, pp. 19–25.

[10] G. Fenu, L.Marchesi,M.Marchesi, andR. Tonelli, ‘‘The ICO phenomenon
and its relationships with ethereum smart contract environment,’’ 2018,
arXiv:1803.01394. [Online]. Available: https://arxiv.org/abs/1803.01394

[11] S. Ibba, A. Pinna, G. Baralla, and M. Marchesi, ‘‘ICOs overview: Should
investors choose an ICO developed with the lean startup methodology?’’
in Proc. Int. Conf. Agile Softw. Develop. Cham, Switzerland: Springer,
May 2018, pp. 293–308.

[12] S. Ibba, A. Pinna, M. Seu, and F. E. Pani, ‘‘CitySense: Blockchain-oriented
smart cities,’’ Proc. Sci. Workshops, New York, NY, USA, May 2017,
Art. no. 12.

[13] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, ‘‘Making smart
contracts smarter,’’ in Proc. ACM SIGSACConf. Comput. Commun. Secur.,
Oct. 2016, pp. 254–269.

[14] K. Mannaro, A. Pinna, and M. Marchesi, ‘‘Crypto-trading: Blockchain-
oriented energy market,’’ in Proc. AEIT Int. Annu. Conf., Sep. 2017,
pp. 1–5.

[15] K. Mannaro, G. Baralla, A. Pinna, and S. Ibba, ‘‘A blockchain approach
applied to a teledermatology platform in the sardinian region (italy),’’
Information, vol. 9, no. 2, p. 44, Feb. 2018.

[16] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng., vol. SE-
2, no. 4, pp. 308–320, Dec. 1976.

[17] R. Norvill, B. B. F. Pontiveros, R. State, I. Awan, and A. Cullen, ‘‘Auto-
mated labeling of unknown contracts in ethereum,’’ in Proc. 26th Int. Conf.
Comput. Commun. Netw. (ICCCN), Jul./Aug. 2017, pp. 1–6

[18] S. Porru, A. Pinna, M. Marchesi, and R. Tonelli, ‘‘Blockchain-oriented
software engineering: Challenges and new directions,’’ inProc. IEEE/ACM
39th Int. Conf. Softw. Eng. Companion (ICSE-C), Piscataway, NJ, USA,
May 2017. pp. 169–171.

[19] M. Suiche, ‘‘Porosity: A decompiler for blockchain-based smart contracts
bytecode,’’ DEF CON, vol. 25, p. 11, Jul. 2017.

[20] M. Swan, Blockchain: Blueprint for a New Economy. Newton, MA, USA:
O’Reilly Media, 2015.

[21] N. Szabo, ‘‘The idea of smart contracts,’’ Satoshi Nakamoto Institutue,
Tech. Rep., 1997. [Online]. Available: https://nakamotoinstitute.org/the-
idea-of-smart-contracts/

[22] R. Tonelli, G. Destefanis, M. Marchesi, and M. Ortu, ‘‘Smart Contracts
Software Metrics: A First Study,’’ Feb. 2018, arXiv:1802.01517. [Online].
Available: https://arxiv.org/abs/1802.01517

[23] Z. Wan, D. Lo, X. Xia, and L. Cai, ‘‘Bug characteristics in blockchain
systems: A large-scale empirical study,’’ in Proc. IEEE/ACM 14th Int.
Conf. Mining Softw. Repositories (MSR), May 2017, pp. 413–424.

[24] G. Wood, ‘‘Ethereum: A secure decentralised generalised transaction
ledger,’’ Ethereum project yellow paper, vol. 151, pp. 1–32, Apr. 2014.

ANDREA PINNA received the B.S. and M.S.
degrees in electronic engineering and the Ph.D.
degree in computer engineering from the Univer-
sity of Cagliari, in 2012 and 2018, respectively,
where he has been a Research Fellow, since 2018.

His research interest concerns the study of
blockchain technology and its applications. His
topics of interest include the study of smart con-
tracts, the engineering aspects in the development
of decentralized applications, and the enhance-

ment of the software sustainability thanks to the blockchain technology.
He also dealt with the study of data stored inside blockchain of network
features and users’ behaviors.

SIMONA IBBA received the B.S. and M.S.
degrees in electronic engineering and the Ph.D.
degree in computer engineering from the Univer-
sity of Cagliari, in 2019.

Her scientific research activities are focused
on the study of blockchain-based software and in
particular on the application of the agile method-
ologies in blockchain software development. Her
interests also include the knowledge management
development and in particular the knowledge rep-

resentation design, strategies for knowledge management, and the study of
taxonomies, folksonomies, digital libraries, and scholarly literature.

GAVINA BARALLA received the master’s degree
in electronic engineering from the University of
Cagliari, in 2012, where she is currently pursuing
the Ph.D. degree in electronic and computer engi-
neering.

Her research interests include knowledge
management referred to semantic web, use of
taxonomies, ontologies, linked data, blockchain
technology, and smart contracts.

78212 VOLUME 7, 2019

etherscan.io

A. Pinna et al.: Massive Analysis of Ethereum SCs Empirical Study and Code Metrics

ROBERTO TONELLI received the Ph.D. degrees
in physics and in computer engineering, in 2000
and 2012, respectively.

He is currently a Temporary Researcher and a
Professor with the University of Cagliari, Italy.
The main topic of his research has been the study
of power laws in software systems within the
perspective of describing software quality. Since
2014, he has been extended his research interest to
the blockchain technology. His research interests
are widespread and multidisciplinary.

MICHELE MARCHESI received the degree in
Electronic engineering from the University of
Genova, in 1975. He has been a Full Professor with
the Faculty of Engineering, University of Cagliari,
since 1994. Since 2016, he has been a Full Pro-
fessor with the Department of Mathematics and
Computer Science, University of Cagliari, where
he teaches software engineering course.

He has authored over 200 international publica-
tions, including over 70 in the magazine. He has

been one of the first in Italy to deal with OOP, since 1986. He was a Founding
Member of TABOO, the Italian association on object-oriented techniques.
He has also worked on object analysis and design, UML language and
metrics for object-oriented systems since the introduction of these research
themes. In 1998, he was the first in Italy to deal with Extreme Program-
ming (XP) and agile methodologies for software production. He organized
the first andmost important world conferences on Extreme Programming and
Agile Processes in Software Engineering, Sardinia, from 2000 to 2002. Since
2014, being among the first in Italy, he has extended his research interest
to blockchain technologies, obtaining significant results in the scientific
community.

VOLUME 7, 2019 78213

	INTRODUCTION
	RELATED WORKS
	BACKGROUND
	THE ETHEREUM SYSTEM
	SOLIDITY SMART CONTRACTS

	ANALYSIS OF THE SMART CONTRACTS DATASET
	SMART CONTRACTS PARAMETERS: ANALYSIS
	CONTRACT NAME
	COMPILER VERSION
	BALANCES AND TRANSACTIONS

	MEASURES ON SMART CONTRACTS SOURCE CODES
	VOLUME METRICS
	CONTRACT ORIENTED METRICS

	DETAILED ANALYSIS OF THE TOP 20 USED SMART CONTRACTS
	SMART CONTRACTS DESCRIPTION
	ETHERDELTA
	REPLAYSAFESPLIT
	REGISTRAR
	CONTROLLER
	GOLEM NETWORK TOKEN (GNT)

	SMART CONTRACTS USAGE INDICATORS
	BLOCKCHAIN INTERACTION
	DEVELOPERS' INTERACTIONS: VERSIONS AND REUSE OF CODE

	CODE METRICS
	ANALYSIS OF RESULTS

	DISCUSSION AND RESULTS
	CONCLUSION
	CROWDSALE
	REPLAYSAFESPLIT
	KITTYCORE

	REFERENCES
	Biographies
	ANDREA PINNA
	SIMONA IBBA
	GAVINA BARALLA
	ROBERTO TONELLI
	MICHELE MARCHESI

